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6.231 DYNAMIC PROGRAMMING
LECTURE 12
LECTURE OUTLINE

More on rollout algorithms - Stochastic prob-

lems

Simulation-based methods for rollout
Approximations of rollout algorithms
Rolling horizon approximations
Discretization of continuous time
Discretization of continuous space

Other suboptimal approaches



ROLLOUTALGORITHMS -STOCHASTIC PROBLEM

e Rollout policy: At each k£ and state zx, use
the control 71, (x) that

min ~ Qx(xk, ug),
up €U (z)

where
Qr(Tr, ug) = E{gk(wk, Uk, Wk ) +Hrq1 (fk($k> Uk, wk))}

and Hy11(xg11) is the cost-to-go of the heuristic.

o (Qr(rp,ur) is called the Q-factor of (xy,ur),
and for a stochastic problem, its computation may
involve Monte Carlo simulation.

e Potential difficulty: To minimize over u the Q)-
factor, we must form Q-factor differences Qx(rg, u)—
Qr(xk,w). This differencing often amplifies the
simulation error in the calculation of the )-factors.

e Potential remedy: Compare any two controls
v and uw by simulating the @Q-factor differences
Qr(xk,u) — Qr(xg,w) directly. This may effect
variance reduction of the simulation-induced er-
TOor.



Q-FACTOR APPROXIMATION

e Here, instead of simulating the ()-factors, we
approximate the costs-to-go Hp11(Tg11).

e (ertainty equivalence approach: Given xy, fix
future disturbances at “typical” values wgy1,...,WN—_1
and approximate the ()-factors with

Qr (xr, ur) = E{ g (xr, uk, w)+Hyr1 (fr(@r, us, wy)) }

where ﬁk+1 (fk (Tk, ug, wk)) is the cost of the heuris-
tic with the disturbances fixed at the typical val-
ues.

e Thisis an approximation of Hy 1 (fk (Tk, uk, wk))
by using a “single sample simulation.”

e Variant of the certainty equivalence approach:
Approximate Hy (fk(a:k, Uk, wk)) by simulation
using a small number of “representative samples”
(scenarios).

e Alternative: Calculate (exact or approximate)
values for the cost-to-go of the base policy at a
limited set of state-time pairs, and then approx-
imate Hgy1 using an approximation architecture
and a “training algorithm” or “least-squares fit.”



ROLLING HORIZON APPROACH

e This is an [-step lookahead policy where the
cost-to-go approximation is just 0.

e Alternatively, the cost-to-go approximation is
the terminal cost function gxy.

e A short rolling horizon saves computation.

e “Paradox”: It is not true that a longer rolling
horizon always improves performance.

e Example: At the initial state, there are two
controls available (1 and 2). At every other state,
there is only one control.
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ROLLING HORIZON COMBINED WITH ROLLOUT

e We can use a rolling horizon approximation in
calculating the cost-to-go of the base heuristic.

e Because the heuristic is suboptimal, the ratio-
nale for a long rolling horizon becomes weaker.

e Example: N-stage stopping problem where
the stopping cost is 0, the continuation cost is ei-
ther —e or 1, where 0 < € << 1, and the first state
with continuation cost equal to 1 is state m. Then
the optimal policy is to stop at state m, and the
optimal cost is —me.

AR

Stopped State

e (onsider the heuristic that continues at every
state, and the rollout policy that is based on this
heuristic, with a rolling horizon of [ < m steps.

e It will continue up to the first m — [ + 1 stages,
thus compiling a cost of —(m —1[41)e. The rollout
performance improves as | becomes shorter!

e Limited vision may work to our advantage!



DISCRETIZATION

e If the state space and/or control space is con-
tinuous/infinite, it must be replaced by a finite
discretization.

e Need for consistency, i.e., as the discretization
becomes finer, the cost-to-go functions of the dis-
cretized problem converge to those of the contin-
uous problem.

e Pitfalls with discretizing continuous time.

e The control constraint set changes a lot as we
pass to the discrete-time approximation.

e C(Continuous-Time Shortest Path Pitfall:

21(t) = ui(t),  @2(t) = ua(?),

with control constraint u;(t) € {—1,1} and cost
fo ( )dt Compare with naive discretization
xl(t—l—At) — a:l(t)—i—Atul (t), X9 (t—I—At) = X9 (t)—I—AtUQ (t)
with u,(t) € {—1, 1}.

o “Convexification effect” of continuous time.



SPACE DISCRETIZATION 1

e Given a discrete-time system with state space
S, consider a finite subset S; for example S could
be a finite grid within a continuous state space S.

e Difficulty: f(z,u,w) ¢ S forxz € S.

e We define an approximation to the original
problem, with state space S, as follows:

e Express each x € S as a convex combination of
states in 9, i.e.,

xr = Z vi(z)x; where v;(x) > 0, Z% =

x; €S

e Define a “reduced” dynamic system with state
space S, whereby from each z; € S we move to
T=1f (ZUZ, u,w) according to the system equation
of the original problem, and then move to z; € S
with probabilities v; (7).

e Define similarly the corresponding cost per stage
of the transitions of the reduced system.



SPACE DISCRETIZATION 11

o Let Jy(z;) be the optimal cost-to-go of the “re-
duced” problem from each state x; € S and time
k onward.

e Approximate the optimal cost-to-go of any x €
S for the original problem by

Z'Yz Jk -777,

;€S
and use one-step-lookahead based on Jj.

e The choice of coefficients ~;(x) is in principle
arbitrary, but should aim at consistency, i.e., as
the number of states in S increases, Jj(x) Should
converge to the optimal cost-to-go of the original
problem.

e Interesting observation: While the original prob-
lem may be deterministic, the reduced problem is
always stochastic.

e Generalization: The set S may be any finite set
(not a subset of S) as long as the coefficients v; ()
admit a meaningtul interpretation that quantifies
the degree of association of z with x;.



OTHER SUBOPTIMAL CONTROL APPROACHES

e Minimize the DP equation error: Approxi-
mate the optimal cost-to-go functions Ji(xx) with
functions jk(a:k,rk), where r; is a vector of un-
known parameters, chosen to minimize some form
of error in the DP equations.

e Direct approximation of control policies:
For a subset of states x*, 1 =1,...,m, find

f(x7) = arg  min  E{g(x?, uy, wy)
up €U (z*)

+ o1 (fr (2, up, wi), g1 b

Then find fix(xk, sx), where si is a vector of pa-
rameters obtained by solving the problem

msiﬂz [ fue () — fur (2, 5)][2.
1=1

e Approximation in policy space: Do not
bother with cost-to-go approximations. Parametrize
the policies as jir(zk, sk), and minimize the cost
function of the problem over the parameters sg.



