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6.231 DYNAMIC PROGRAMMING


LECTURE 1


LECTURE OUTLINE


• Problem Formulation 

• Examples 

• The Basic Problem 

• Significance of Feedback 
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DP AS AN OPTIMIZATION METHODOLOGY


•	 Generic optimization problem: 

min g(u) 
u∈U 

where u is the optimization/decision variable, g(u) 
is the cost function, and U is the constraint set 

•	 Categories of problems: 
− Discrete (U is finite) or continuous 
− Linear (g is linear and U is polyhedral) or 

nonlinear 
− Stochastic or deterministic: In stochastic prob­

lems the cost involves a stochastic parameter 
w, which is averaged, i.e., it has the form 

g(u) =  Ew G(u,w) 

where w is a random parameter. 

• DP can deal with complex stochastic problems 
where information about w becomes available in 
stages, and the decisions are also made in stages 
and make use of this information. 
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BASIC STRUCTURE OF STOCHASTIC DP


• Discrete-time system 

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N  − 1 

− k: Discrete time 

− xk: State; summarizes past information that 
is relevant for future optimization 

− uk: Control; decision to be selected at time 
k from a given set 

− wk: Random parameter (also called distur­

bance or noise depending on the context)


− N : Horizon or number of times control is

applied 

• Cost function that is additive over time 

N−1 

E gN (xN ) +  gk(xk, uk, wk) 
k=0 
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INVENTORY CONTROL EXAMPLE


Inventory 
System 

Stock Ordered at 
Period k 

Stock at Period k Stock at Period k + 1 

Demand at Period k 

xk 

wk 

xk  + 1 = xk + uk - wk 

uk 
Cos t  of P e riod k 

c uk + r (xk  + uk - wk) 

• Discrete-time system 

xk+1 = fk(xk, uk, wk) =  xk + uk − wk 

• Cost function that is additive over time 

N−1 

E gN (xN ) +  gk(xk, uk, wk)

k=0


N−1 

= E cuk + r(xk + uk − wk) 
k=0 

• Optimization over policies: Rules/functions uk = 
µk(xk) that map states to controls 
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ADDITIONAL ASSUMPTIONS


• The set of values that the control uk can take 
depend at most on xk and not on prior x or u 

• Probability distribution of wk does not depend 
on past values wk 1, . . . , w0, but may depend on −
xk and uk 

−	 Otherwise past values of w or x would be 
useful for future optimization 

•	 Sequence of events envisioned in period k: 
− xk occurs according to 

	  
xk	 = fk−1 xk−1, uk−1, wk−1 

− uk is selected with knowledge of xk, i.e., 

uk	∈ Uk(xk) 

−	 wk is random and generated according to a 
distribution 

Pwk (xk, uk) 



DETERMINISTIC FINITE-STATE PROBLEMS


• Scheduling example: Find optimal sequence of 
operations A, B, C, D 

• A must precede B, and C must precede D 

• Given startup cost SA and SC , and setup tran­
sition cost Cmn from operation m to operation n 
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C 

S C 

AB 
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CDA 
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ABC 

CA 
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ACD 
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CCD 
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CDA 

CCD 

CBD 

CDB 

CBD 

CDB 

CAB 

Initial 
State  



STOCHASTIC FINITE-STATE PROBLEMS


• Example: Find two-game chess match strategy 

• Timid play draws with prob. pd > 0 and l oses  
with prob. 1 − pd. Bold play wins with prob. pw < 
1/2 and loses with prob. 1 − pw 
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BASIC PROBLEM


• System xk+1 = fk(xk, uk, wk), k = 0, . . . , N−1 

• Control contraints uk ∈ Uk(xk) 

• Probability distribution Pk(· | xk, uk) of  wk 

• Policies π = {µ0, . . . , µN−1}, where µk maps 
states xk into controls uk = µk(xk) and  is  such  
that µk(xk) ∈ Uk(xk) for all xk 

• Expected cost of π starting at x0 is 

N−1 

Jπ(x0) =  E gN (xN ) +  gk(xk, µk(xk), wk)

k=0


• Optimal cost function 

J∗(x0) =  min Jπ(x0)
π 

• Optimal policy π∗ satisfies 

Jπ∗ (x0) =  J∗(x0) 

∗When produced by DP, π is independent of x0. 



mk

uk  mk(xk)uk µk(xk)

SIGNIFICANCE OF FEEDBACK 

• Open-loop versus closed-loop policies

 System 
xk + 1 = fk(xk,uk,wk) 

= xk 

wk 

= 

µk 

• In deterministic problems open loop is as good 
as closed loop 

• Chess match example; value of information 

Timid Play 

1 - pd 

pd 

Bold Play 

0 - 0 

1 - 0 
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1 - pw 

pw 

1.5-0.5 
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1 - 1 

0 - 2 
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Bold Play 



VARIANTS OF DP PROBLEMS


• Continuous-time problems 

• Imperfect state information problems 

• Infinite horizon problems 

• Suboptimal control 



LECTURE BREAKDOWN


•	 Finite Horizon Problems (Vol. 1, Ch. 1-6) 
− Ch. 1: The DP algorithm (2 lectures) 
− Ch. 2: Deterministic finite-state problems (2 

lectures) 
− Ch. 3: Deterministic continuous-time prob­

lems (1 lecture) 
− Ch. 4: Stochastic DP problems (2 lectures) 
− Ch. 5: Imperfect state information problems 

(2 lectures)

− Ch. 6: Suboptimal control (3 lectures)


• Infinite Horizon Problems - Simple (Vol. 1, Ch.  
7, 2 lectures) 

•	 Infinite Horizon Problems - Advanced (Vol. 2) 
− Ch. 1: Discounted problems - Computational 

methods (3 lectures) 
− Ch. 2: Stochastic shortest path problems (1 

lecture) 
− Ch. 3: Undiscounted problems (1 lecture) 
− Ch. 6: Approximate DP (4 lectures) 



A NOTE ON THESE SLIDES


• These slides are a teaching aid, not a text 

• Don’t expect a rigorous mathematical develop­
ment or precise mathematical statements 

• Figures are meant to convey and enhance ideas, 
not to express them precisely 

• Omitted proofs and a much fuller discussion 
can be found in the text, which these slides follow 


