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6.231 Dynamic Programming


Midterm Exam, Fall 2002


October 29, 2002 2:30-4:30pm


Prof. Dimitri Bertsekas


Problem 1 (20 points) 

We have a set of N objects, denoted 1, 2, . . . , N , which we want to group in clusters that consist of consecutive 

objects. For each cluster i, i+1, . . . , j, there is an associated cost aij . We want to find a grouping of the objects 
in clusters such that the total cost is minimum. Formulate the problem as a shortest path problem, and write 

a DP algorithm for its solution. (Note: An example of this problem arises in typesetting programs, such as 
TEX/LATEX, that break down a paragraph into lines in a way that optimizes the paragraph’s appearance.) 

Problem 2 (40 points) 

The latest casino sensation is a slot machine with N arms, labeled 1, . . . , N . A single play with arm i costs 
Ci dollars, and has two possible outcomes: a “win,” which occurs with probability pi and pays a reward Ri, 
and a “loss,” which occurs with probability 1 − pi. The rule is that each arm may be played at most once, 
and play must stop at the first loss or after playing all arms once, whichever comes first. The objective is to 

find the arm-playing order that maximizes the total expected reward minus the total expected cost. 

(a) Write a DP algorithm for solving the problem. 

(b) Show that it is optimal to play the arms in order of nonincreasing (piRi − Ci)/(1 − pi). Note: This may 

be shown with or without using the DP algorithm of part (a). 

(c) Assume that at any time, there is the option to stop playing, in addition to selecting a new arm to play. 
Write a DP algorithm for solving this variant of the problem, and find an optimal policy. 

(d) Suppose that in the context of part (c), you may play an arm as many times as you want, but each time 

the reward to be obtained diminishes by a factor β with 0 < β < 1. Assuming that Ci > 0, find an 

optimal policy. 

Problem 3 (40 points) 
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Consider an inventory control problem where stock evolves according to 

xk+1 = xk + uk − wk, 

and the cost of stage k is 

cuk + h max(0, wk − xk − uk) + p max(0, xk + uk − wk), 

where c, h, and p are positive scalars with p > c. There is no terminal cost. The stock xk is perfectly observed 

at each stage. The demands wk are independent, identically distributed, nonnegative random variables. 
However, the (common) distribution of the wk is unknown. Instead it is known that this distribution is one 

out of two known distributions F1 and F2, and that the a priori probability that F1 is the correct distribution 

is a given scalar q, with 0 < q < 1. You may assume for convenience that wk can take a finite number of 
values under each of F1 and F2. 

(a) Formulate this as an imperfect state information problem, and identify the state, control, system distur­
bance, observation, and observation disturbance. 

(b) Write a DP algorithm in terms of a suitable sufficient statistic. 

(c) Characterize as best as you can the optimal policy. 

MIDTERM SOLUTIONS: 

Problem 1 (20 points) 

We may model this problem as a deterministic shortest path problem with nodes {0, 1, . . . , N}, where 0 is 
the start and N is the destination, and arcs (i, j) only if j > i (unless you are at node N which is absorbing). 
So each arc (i, j), for i =� N , corresponds to a cluster of nodes i + 1, i + 2, . . . , j which has cost ai+1,j , while 

arc (N, N) has cost 0. 

We have the following DP problem setup: 

xk=last node of a cluster 

xk ∈ S = {0, 1, . . . , N} for k = 0, 1, . . . , N 

xk+1 = uk for k = 0, 1, . . . , N − 1 

x0 = 0 

uk ∈ Uk(x) = {i ∈ S | i > x} if x =� N k = 0, 1, . . . , N − 1 
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and 

uk ∈ Uk(x) = {N} if x = N 

Moreover:

gk(x, u) = ax+1,u if x �= N k = 0, 1 . . . , N − 1


and 

gk(x, u) = 0 if x = N 

We then have the following DP algorithm: 
JN (N) = 0 

Jk(i) = min if i = N k = 0, 1, . . . , N − 1 
{j∈S|j>i} 

[ai+1,j + Jk+1(j)] �

and 

Jk(i) = 0 if i = N 

The optimal cost is then J0(0). 

Problem 2 (40 points) 

(a) (12 points) Choose as state at stage k the set of N − k arms not yet played (if no loss has occured in 

the first k − 1 plays) or a special termination state otherwise (which has cost-to-go 0 at all stages under any 

policy). The initial state is then the set {1, 2, . . . , N}. The expected reward at each stage is piRi − Ci, where 

i is the arm selected to play. The DP algorithm at the nontermination states is 

� � � � �� 
Jk {i1, . . . , iN −k} = max piRi − Ci + piJk+1 {i1, . . . , iN−k} − {i} , k = 0, . . . , N − 1, 

i∈{11,...,iN −k } 

JN (∅) = 0. 

(b) (12 points) The problem is identical to the quiz problem with expected reward for trying the ith question 

equal to piRi − Ci. The result follows by the interchange argument in the book, with expected reward given 

the order i1, i2, . . . , iN equal to pi1 Ri1 − Ci1 + pi1 (pi2 Ri2 − Ci2 ) + . . . + pi1 pi2 piN −1 (piN RiN − CiN ).· · · 

(c) (8 points) Transform the problem to the one of parts (a) and (b) by adding a new arm N + 1 with 

CN+1 = 0, pN +1 = 0, RN+1 = 0. 

Choosing this arm is equivalent to stopping, since its cost, reward, and probability of continuing are all equal 
to 0. Since this new arm’s index ((piRi − Ci)/(1 − pi)) is equal to 0, we never play any arm with negative 

index. An optimal policy is to select the set of arms i with piRi > Ci, play them in order of nonincreasing 

(piRi − Ci)/(1 − pi), and then stop. 
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(d) (8 points) Create additional arms with reward βm−1Ri corresponding to playing arm i for the mth time. 
However, create new arms only for the finite number of values of m for which piβm−1Ri > Ci. We initially 

ignore the constraint that arm (i, l) must be played before arm (i, l + 1) for all i, l. Using the results of part 
(c), the optimal policy for this problem is to select the set of arms with (i, m) satisfying piβm−1Ri > Ci, play 

them in order of nonincreasing (piβm−1Ri − Ci)/(1 − pi), and then stop. Notice that this optimal policy, 
for any i, always plays arm (i, l) before arm (i, l + 1) for all l, and therefore is also optimal over the set of 
orderings with this constraint. 

Problem 3 (40 points) 

(a) (13 points) The state is (xk, dk), where dk takes the value 1 or 2 depending on whether the common 

distribution of the wk is F1 or F2. The variable dk stays constant (i.e., satisfies dk+1 = dk for all k), but is not 
observed perfectly. Instead, the sample demand values w0, w1, . . . are observed (wk = xk + uk − xk+1), and 

provide information regarding the value of dk. In particular, given the a priori probability q and the demand 

values w0, . . . , wk−1, we can calculate the conditional probability that wk will be generated according to F1. 

(b) (13 points) A suitable sufficient statistic is (xk, qk), where 

qk = P (dk = 1 | w0, . . . , wk−1). 

The conditional probability qk evolves according to 

qkP (wk | F1) 
qk+1 = , q0 = q, 

qkP (wk | F1) + (1 − qk)P (wk | F2) 

where P {· | Fi} denotes probability under the distribution Fi, and assuming that wk can take a finite number 
of values under the distributions F1 and F2. 

The initial step of the DP algorithm in terms of this sufficient statistic is 

JN −1(xN−1, qN−1) = min cuN−1

uN −1≥0


+ qN−1E h max(0, wN−1 − xN−1 − uN−1) + p max(0, xN−1 + uN−1 − wN−1) | F1 

+ (1 − qN −1)E h max(0, wN−1 − xN −1 − uN −1) + p max(0, xN −1 + uN−1 − wN−1) | F2 , 

where E{· | Fi} denotes expected value with respect to the distribution Fi. 

The typical step of the DP algorithm is 

Jk(xk, qk) = min cuk

uk ≥0


+ qkE h max(0, wk − xk − uk) + p max(0, xk + uk − wk) 

+ Jk+1 xk + uk − wk, φ(qk, wk) | F1 

+ (1 − qk)E h max(0, wk − xk − uk) + p max(0, xk + uk − wk) 

+ Jk+1 xk + uk − wk, φ(qk, wk) | F2 , 

where 

φk(qk, wk) = 
qkP (wk | F1) 

. 
qkP (wk | F1) + (1 − qk)P (wk | F2) 
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(c) (14 points) It can be shown inductively, as in the text, that Jk(xk, qk) is convex and coercive as a function 

of xk for fixed qk. For a fixed value of qk, the minimization in the right-hand side of the DP minimization is 
exactly the same as in the text with the probability distribution of wk being the mixture of the distributions 
F1 and F2 with corresponding probabilities qk and (1 − qk). It follows that for each value of qk, there is a 

threshold Sk(qk) such that it is optimal to order an amount Sk(qk)−xk, if Sk(qk) > xk, and to order nothing 

otherwise. In particular, Sk(qk) minimizes over y the function 

cy + qkE h max(0, wk − y) + p max(0, y − wk) + Jk+1 y − wk, φk(qk, wk) | F1 

+ (1 − qk)E h max(0, wk − y) + p max(0, y − wk) + Jk+1 y − wk, φk(qk, wk) | F2 . 
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