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In all problems, please show your work and explain your reasoning. Statistical tables for the 
cumulative standard normal distribution, percentage points of the χ2 distribution, percentage 
points of the t distribution, and percentage points of the F distribution (all from Montgomery, 5th 
Ed.) are provided. 

Problem 1 [45%] 

An experiment is designed and executed, in which the design or input variable is x and the output 
variable is y. The input range is normalized to [-1, +1]. Experiments are run in the order shown 
in Table 1 below, with the input setting and output result as given in the table. 

Table 1: Full factorial DOE experiment results 

Run # x y

1 -1 8

2 1 18

3 -1 9

4 1 19

5 -1 10

6 1 20

Part (a) [5%] 

Fit a model of the form y = β0 + β1 x to the data, and determine point estimates for β0 and β1.  

ANSWER: Since the design is normalized to ±1 and is balanced, we can use simplified contrasts 
for the estimation of the offset and linear terms: 

 β0 = overall average = 14 

 β1 = (19-9)/2 = 5 

Or y = 14 + 5x 
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Part (b) [10%] 

Determine the standard error (std. err.) and 95% confidence intervals for the estimates of β0 and 
β1. Are both parameters significant to 95% confidence or better? Should you include both terms 
in the model? 

ANSWER: First, we need an estimate of the underlying pure error. The residuals for runs 1 
through 6 are -1, -1, 0, 0, +1, +1, giving a SSE = 4, with degrees of freedom = 4. So the MSE is 
4/4 = 1. That is to say, our estimate for σ2

E is 1. With this error estimate, we can now estimate 
the variance for both the constant and slop terms. For the constant term, 
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Thus the standard error for each estimate is 408.0
6
1err. std. == . Finally, we can formulate the 

95% confidence intervals using the t distribution with 4 degrees of freedom (4 since we have a 
pooled estimate of variance using two different x levels): 776.24,025.0,2/ == tt να , so that the 
confidence intervals are at 13.1)408.0(776.2 ±=±  around the point estimates, i.e.: 

13.1140 ±=β  or 13.1587.12 0 ≤≤ β   and 

13.151 ±=β  or 13.687.3 0 ≤≤ β   . 

 

 
Part (c) [5%] 

Following good practice, we next examine the residuals (differences between the model 
prediction values and measured values, for our data). In particular, we consider the residuals as a 
function of run order. What pattern in the residuals raises a concern? What modifications might 
you suggest to the experimental design or analysis in light of this? 

ANSWER: Reviewing the residuals in time order, we see they go as -1, -1, 0, 0, +1, +1, 
suggesting that there may be a systematic drift in time of the experiment. The design of 
experiments was constructed in such a way that this possibility is “blocked” against: by 
alternating between the low and high input values, we do not confound a temporal drift with the 
main effect or dependence on the input value x. Thus, a systematic time drift, if present, is turned 
into a “noise” factor (and may, indeed, be entirely responsible for our observed residuals). 
However, we might want to explore this more carefully with an extended experimental design. 
For example, we might do multiple replicates at a center point, perhaps in sequence, to see if 
there is additional evidence of a temporal drift. In the analysis, if we are confident that time is 
indeed a significant factor, then we might include it in the model (or estimate the magnitude of 
the drift and subtract it from our data, before fitting to the controllable input parameter x). 
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Part (d) [10%] 

Setting aside any reservations about the existing experimental design or the model, we next 
consider using the model to predict some values, for further experimentation and optimization.  

(i) We are interested in how well the model predicts outputs, at different values for x. 
Derive a formula for the standard error ( ys ˆ ) in the output estimate iŷ  as a function of 
the input value xi. 

ANSWER: We can use the formulas for a mean-centered model from lecture. Or re-deriving: 
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(ii) Next, we consider a prediction at possible center point in the input space. Provide a 
95% confidence interval prediction for the output value at the design space center 
point, i.e., give the point estimate and 95% confidence interval bounds for )0(ˆ =xy .  

ANSWER: With the standard error in hand for y as a function of x, we combine this with the t 
distribution to generate a confidence interval with the desired level of confidence: 

2
ˆ,2/ 1)408.0(77.2)()(ˆ interval  conf. iiyii xxystxyy +±=⋅±= να  

So for xi  = 0, we have 13.11401)408.0(77.214ˆ ±=+±=iy  consistent with our previously 
derived estimate for the mean. 
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(iii) Finally, we also consider an extrapolation of the model beyond the original range of 
experimentation. Provide a 95% confidence interval prediction for the output value at 
x equal to 3 (in normalized units), i.e., give the point estimate and 95% confidence 
interval bounds for ).3(ˆ =xy  Comment on the confidence in model outputs as a 
function of how far we are extrapolating from our experimental region. 

ANSWER: Using the formula derived above, for xi  = 3, we have 
57.3291013.12931)408.0(77.2)514(ˆ 2 ±=⋅±=+±⋅+= ii xy  . Thus, we see that the 

confidence interval widens considerably (from ±1.13 to ±3.57) when we extrapolate from the 
central region of our experiment. We should be very cautious in using extrapolated values, for 
example in driving toward an optimal point, outside our region of data. 

 

 

Part (e) [10%] 

We now perform one additional experimental run to augment Table 1. Setting the input x to 0, 
the output y is experimentally observed to be equal to 7. Based on this, perform and discuss a 
lack of fit analysis. To 95% confidence or better, does the model from part (a) show evidence of 
lack of fit? 

ANSWER: The lack of fit analysis can be done efficiently, based on the work we have already 
done. From the linear model, we see that the prediction error is (14-7) = 7, for a sum of squared 
deviation of 49 or MSL = 49/1 = 49. We compare this to the pure replicate mean square error 
(previously derived) of MSE = 1. The F ratio is thus 49, which is much larger than F1,4,0.05 = 7.71, 
providing ample evidence that the linear model is a poor fit to the data. 

An even faster way is to recognize that the observed value y = 7 is outside the 95% c.i. calculated 
in part d(ii), and is thus evidence of lack of fit at the confidence level. 

 

 

Part (f) [5%] 

Fit a new model, including the center point data point (x=0, y=7). I.e., find 0α , 1α , and 2α  for a 
model of the form . For this part, point estimates are sufficient. Note: it is 
possible to identify model coefficients by inspection, graphical, or other simplified means; full-
scale set up and solution of regression equations is not necessary. 

2
210 xxy ⋅+⋅+= ααα

ANSWER: Our 0α  term is simply the observed value when x = 0, or 70 =α . The same linear 
term will be estimated, since the addition of the quadratic term cannot change this value; thus 

51 =α . Finally, we can plug in for the observed mean at x = -1 to get 
 so )1(575 22 αα +−+ xx79 += 2 = 72 =α .
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Problem 2 [20%] 

Consider the random-access memory chip shown below, having R rows and C columns: 

 

We are interested in investigating the defect tolerance of the memory array. Small particles 
(which may be regarded as causing point defects) land on the memory chip during fabrication, 
with a per-area density of D0. Particles landing on the datapath, row decoder or control logic do 
not cause faults (these circuits are very robustly designed), but when a defect lands on one of the 
memory cells, each cell having an area A, the entire row and the entire column of cells in which 
the afflicted cell sits are rendered inoperative.  

Assume that the spatial density of defects is very tightly distributed, so that we can write the 
proportion of memory cells not hit by a particle during fabrication as Y = exp(–AD0).   

 
Part (a) [3%] 

Write down an expression in terms of Y, R, and C for the number, F, of individual memory cells 
hit by particles during fabrication.  

 

F = (1–Y)RC 
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Part (b) [10%] 

Write down expressions in terms of Y, R and C for (i) the proportion of columns that are 
operative after fabrication, and (ii) the proportion of rows operative. 

 

(i) (C–F)/C      or simply (better) YR 

(ii) (R–F)/R      or simply (better) YC 

where F = (1–Y)RC 

The first expression in each of (i) and (ii) above assumes that two defects occupy a given row or 
column.  
 

Part (c) [7%] 

Write down an expression in terms of Y, R and C for the overall proportion, P, of memory cells 
that is available for use after fabrication.  

Take the product of (i) and (ii) above: 

P = 1 – (1–Y)(R+C) + (1–Y)2RC: this assumes that no two defects occupy a given row or 
column, an assumption that appears invalid below Y ≈ 0.99. 

Or simply YR+C. 
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Part (d) [optional; for up to 5 bonus percentage points] 

Show that the proportion of usable memory cells is maximized when the memory array is square. 

 

RC must be constant for a memory array of a given designed capacity (assume that the design 
does not attempt to compensate for the anticipated yield). Y is fixed for the given memory cell 
design and fabrication process. The aspect ratio (R/C) is the only thing that can change. 
Therefore we must maximize P above by varying R/C. 

Let RC = N 
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Check that P is actually maximized (not minimized) by this solution: 
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So the solution does give a maximum of P. Therefore the optimal array is square, as required. 

A similar derivation is possible if the memory cell yield is YR+C: yield is maximized for minimal 
R+C: implies R = C.
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Problem 3 [35%] 

Part (a) [20%] 

Measurements are made of the threshold voltages of MOSFET devices at three randomly chosen 
locations on each of three wafers themselves chosen randomly from a lot. The deviations of the 
measured threshold voltages from their target value are shown below. Complete the nested 
variance analysis. Cells requiring a value to be inserted have a thick border. Some calculations 
have already been done for you. 

 

Wafer # Site # Threshold voltage 
deviation (mV) 

Wafer 
average 

(mV) 

Squared 
deviations of 

point from 
grand ave. 

(mV2) 

Squared 
deviations of 

wafer ave. 
from grand 
ave. (mV2) 

Squared 
deviations 

of point 
from wafer 
ave. (mV2) 

1 1 1  1  1 
1 2 2  0  0 
1 3 3 2 1 0 1 
2 1 2  0  0 
2 2 2  0  0 
2 3 2 2 0 0 0 
3 1 4  4  4 
3 2 0  4  4 
3 3 2 2 0 0 0 

       
  Grand average: 2    
      
   SS_D 10   
   SS_W  0  
   SS_E   10 
       

ANOVA (in mV2) 
Source Degrees of Freedom SS MS F0 Fcrit (5% level) 

WAFER W-1 = 2 0 0 0 5.14 

ERROR W(M-1) = 6 10 1.67 N/A N/A 

C TOTAL WM-1 = 8 10 1.25 N/A N/A 

   
VARIANCE COMPONENTS (in mV2) 

Variation source MS # data in SS Observed 
variance 

Estimated 
variance 

ERROR (site-to-site) 1.67 1 1.67 1.67 

WAFER (wafer-to-wafer) 0 M = 3 0 0 

TOTAL 1.25 1 1.25 1.67 

 8



Part (b) [5%] 

What do you conclude from the nested variance analysis above? 

F0 < Fcrit, so there is no evidence of wafer-to-wafer variation. All variation appears to be die-to-
die, or in the measurements 

 
 
 
 
Part (c) [10%] 

Now you are given threshold voltage deviation data from the same process, but this time taken 
from nine separate wafers. From each wafer one measurement is taken at one of three specified 
(not randomly chosen) locations. The objective is to check for evidence of any systematic (fixed) 
relationship between threshold voltage deviation and position on the wafer. Complete the 
ANOVA below.  

 
Location 1 

Location 2 

Location 3 

 
Typical wafer (one location 
measured per wafer)  

 

 

Wafer # 

Site 
(location 
on wafer) 

Threshold 
voltage 

deviation (mV) 
Per-location 
average (mV) 

1 1 1 
2 1 2 
3 1 4 

7/3 

4 2 2 
5 2 2 
6 2 0 

4/3 

7 3 3 
8 3 2 
9 3 2 

7/3 

  grand average: 2 
       

Source of variation Sum of 
squares 

Degrees of 
freedom 

Mean 
square F0 Fcrit (5% level) 

Between groups 2 2 1 0.75 5.14 

Within groups 8 6 4/3 N/A N/A 

Total 10 8 N/A N/A N/A 
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Part (c), cont’d. 

Is there evidence at the 95% confidence level of a significant systematic dependence of threshold 
voltage on site location? 

F0 < Fcrit, so there is no evidence at the 95% significance level of a systematic dependence of 
threshold voltage on site location. 




