
6.851: Advanced Data Structures Spring 2010

Lecture 17 — April 8, 2010
Prof. Erik Demaine

1 Overview

Last lecture we covered dynamic trees, also known as link-cut trees. Link-cut trees are able to
represent a dynamic forest of rooted trees in O(log n) amortized time per operation.

In this lecture we will see how to maintain connectivity information for general graphs. We will
start by examining a simpler, although not strictly better, alternative to link-cut trees known as
Euler tour trees. We will then use Euler tour trees to achieve dynamic connectivity in general
graphs in O(log2 n) time. Finally we will survey some of what is and is not known for dynamic
graphs.

2 Euler Tour Trees

Euler Tour trees are due to Henzinger and King [1] and are an alternative to link-cut trees for
representing dynamic trees. Euler tour trees are simpler and easier to analyze than link-cut trees,
but do not naturally store aggregate information about paths in the tree. Euler tour trees are well
suited for storing aggregate information on subtrees, which is a feature we will use in the next
section.

The idea behind Euler Tour trees is to store the Euler tour of the tree. In an arbitrary graph,
an Euler tour is a path that traverses each edge exactly once. For trees we say that each edge is
bidirectional, so the Euler tour of a tree is the path through the tree that begins at the root and
ends at the root, traversing each edge exactly twice — once to enter the subtree, and once to exit
it. The Euler tour of a tree is essentially the depth-first traversal of a tree that returns to the root
at the end. The correspondence between a tree and its Euler tour is shown in Figure 1.

A B

D E

R

GC F

Figure 1: An example tree and its Euler tour. The order in which nodes in the tree are visited
is indicated by the curved red arrows. The Euler tour of the tree shown here corresponds to the
sequence: R A R B C D C E C B F B G B R.

1

In an Euler-Tour tree, we store the Euler tour of a represented tree in a balanced binary search
tree (BST). For some represented tree, each visit to a node in that tree’s Euler tour corresponds
to a node in the BST. Each node in the represented tree holds pointers to the nodes in the BST
representing the first and last times it was visited. As an example, the pointers between the root
of the tree in Figure 1 and its Euler-tour node visitations is shown in Figure 2.

A B

D E

R

GC F

R A R B C D C E C B F B G B R

Figure 2: We represent a tree’s Euler tour as a sequence of visitations starting and ending at the
root. Pointers from that sequence point to the node, and pointers from the node point to the first
and last visitations. In this figure only the pointers relating to the root are shown.

An Euler-Tour tree supports the following operations:

FindRoot(v) Find the root of the tree containing node v. In the Euler tour of a tree, the root is
visited first and last. Therefore we simply return the minimum or maximum element in the BST.

Cut(v) Cut the subtree rooted at v from the rest of the tree. Note that the Euler tour of v’s
subtree is a contiguous subsequence of visits that starts and ends with v, contained in the sequence
of visits for the whole tree. To cut the subtree rooted at v, we may simply split the BST before its
first and after its last visit to v. This splitting gives us the Euler tour of the tree before reaching
v, the tour of v’s subtree, and the tour of the tree after leaving v. Concatenating the first and last
pieces together, and possibly deleting one redundant visitation between the end of the first piece
and beginning of the last, gives us our answer.

Link(u, v) Insert u’s subtree as a child of v. In the resulting Euler tour, we need to traverse u’s
subtree immediately after and immediately before visits to v. Therefore we will split v’s traversal
before the last visit to v, and then concatenate onto the left piece a singleton visit to v, followed
by the Euler tour of u’s subtree, followed by the right piece.

Each of these operations performs a constant number of search, split, and merge operations on the
Euler tour tree. Each of these operations takes O(log n) per operation on a balanced BST data
structure. Consequently, the total running time for Euler-Tour trees is O(log n) per operation. If
we use a B-tree with fanout of Θ(log n) instead of a balanced BST in our Euler tour trees, we can
achieve O(log n/ log log n) searches (from the depth of the tree) and O(log2 n/ log log n) updates
(from the depth times the branching factor).

2

3 Dynamic Connectivity

Our goal is to support queries of the form Connected(u, v) on general undirected graphs that are
subject to vertex and edge insertion and deletion. A large amount of work has been done on this
and related problems, although here we will only discuss the results described in [4] in detail.

3.1 Results in Dynamic Connectivity

There are several results for dynamic connectivity in specific types of graphs. If we restrict ourselves
to dynamic trees instead of dynamic graphs, then we can support O(log n) time for queries and
updates using Euler-Tour trees or Link-Cut trees. If we restrict ourselves to planar graphs, Eppstein
et al. have proven that we can attain O(log n) queries and updates [2]. It remains an open problem
whether O(log n) queries and updates are attainable for general graphs.

Several results are known for dynamic general graphs. In 2000 Thorup showed how to obtain
O(log n(log log n)3) updates and O(log n/ log log log n) queries [3]. Holm, de Lichtenberg, and
Thorup obtained O(log2 n) updates and O(log n/ log log n) queries [4]. Patrascu and Demaine
proved two lower bounds on dynamic connectivity, namely that an O(x log n) update requires
an Ω(log n/ log x) query time, and an O(x log n) query requires an Ω(log n log x) update time for
x > 1 [5]. All of these results are amortized. Finally, Eppstein et al. showed that an O(

√
n)

worst-case update and O(1) query time is achievable [6]. It remains an open problem whether we
can achieveO(poly log n) worst-case updates and queries. Note that [3, 4, 6] are all optimal in a
sense, by the trade-off bounds shown in [5].

3.2 Dynamic Connectivity in O(log2 n)

We will examine the dynamic connectivity algorithm described in [4], which achieves an O(log2 n)
amortized bound.

The high-level idea for this data structure is to store a spanning forest for the input graph G
using an Euler-Tour tree. With this idea alone, we see that we can answer connectivity queries by
checking if both input nodes are in the same tree. An Insert(u, v) can be done by first checking if
u and v are in the same tree, and if not adding (u, v) to the spanning forest. The problem with this
approach is Delete(u, v), and in particular we cannot tell whether deleting (u, v) will disconnect u
and v. To deal with deletes, we will modify our initial idea by hierarchically dividing G into log n
subgraphs and then storing a minimum spanning forest for each subgraph.

To implement this idea, we start by assigning a level to each edge. The level of an edge is an integer
between 0 and log n inclusive that can only decrease over time. (We will use the level of each edge
as a charging mechanism.) We define Gi to be the subgraph of G composed of edges at level i or
less. Note that Glog n = G. Let Fi be the spanning forest of Gi. We will implement our Fi’s using
Euler-Tour trees built on B-trees.

During the execution of this algorithm we will maintain the following two invariants:

Invariant 1 Every connected component of Gi has at most 2i vertices.

3

�
Invariant 2	 F0 ⊆ F1 ⊆ F2 ⊆ . . . ⊆ Flog n. In other words, Fi = Flog n Gi, and Flog n is the

minimum spanning forest of Glog n, where the weight of an edge is its level.

We will also maintain the adjacency matrix for each Gi.

We implement the three operations on this data structure as follows:

Connected(u, v) Check if vertices u and v are connected. To do this, we first query Flog n to see if
u and v are in the same tree. This can be done by checking Flog n if Findroot(u) = Findroot(v).
This costs O(log n/ log log n) using B-tree based Euler-Tour trees.

Insert(e = (u, v)) Insert edge e = (u, v) into the graph. To do this, we first set the level of edge
e to log n and update the adjacency lists of u and v. If u and v are in separate trees in Flog n, add
e to Flog n. This costs O(log n).

Delete(e = (u, v)) Remove edge e = (u, v) from the graph. To do this, we first remove e from
the adjacency lists of u and v. If e is not in Flog n, we’re done. Otherwise:

1. Delete e from Fi for all i ≥ level(e).

Now we want to look for a replacement edge to reconnect u and v.

•	 Note that the replacement edge cannot be at a level less than level(e) by Invariant 2
(recall that each Fi is a minimum spanning forest).

•	 We will start searching for a replacement edge at level(e) to preserve the Invariant 2.

We will look for this replacement edge by doing the following:

2. For i = level(e) to log n:

(a) Let Tu be the tree containing u, and let Tv be the tree containing v. WLOG, assume
|Tv| ≤ |Tu|.

(b) By Invariant 1, we know that |Tu| + |Tv| ≤ 2i, so |Tv| ≤ 2i−1 . This means that we can
afford to push all edges of Tv down to level i − 1.

(c) For each edge (x, y) at level i with x in Tv:

i. If y is in Tu, add (x, y) to Fi, Fi+1, . . . , Flog n, and stop.
ii. Otherwise set level(x, y) i − 1.←

In order for Delete to work correctly, we must augment our Euler-Tour trees. First, each Euler-
Tour tree must keep track of its subtree sizes in order to find which of |Tv| and |Tu| is smaller
in O(1). (This augmentation is standard and easy.) We also need to augment our trees to know
for each node v in the minimum spanning forest Fi whether or not v’s subtree contains any nodes
incident to level-i edges. We can augment the tree to keep track of whether a subtree rooted at
some internal node contains any such nodes. With this augmentation we can find the next level-i
edge incident to x ∈ Tv in O(log n) time using successor and jumping over empty subtrees.

Lines 1 and 2(c)i cost O(log2 n) total, while 2(c)ii in the loop costs O(log n # of edges decremented) ·
total. Note that an edge’s level cannot be lower than 0, so an edge is decremented at most O(log n)
times. Therefore, the amortized cost of Delete is O(log2 n) as desired.

4

4 Other Dynamic Graph Problems

We also have results for other kinds of dynamic graph problems.

For incremental connectivity — where only inserts are allowed on the graph — we can achieve
O(α(n)) amortized updates and queries by using a Union-Find data structure, where α(n) is the
inverse of the Ackermann function. It is also known that achieving a Θ(x) update requires a
Θ(log n/ log x) query time for x > 1. This bound has also been achieved.

For decremental connectivity — where only deletes are allowed on the graph — Thorup showed
that O(1) queries is achievable at a cost of O(m log n + npoly log n) for all updates [7].

In the problem of minimum spanning forest, O(log4 n) updates can be obtained [4], as well
as an O(

√
n) worst-case update [6] for general graphs and a O(log n) update on plane graphs [2].

Bipartiteness, also known as 2-colorability, is reducible to minimum spanning forest.

Planarity testing — in which we ask if inserting some edge (u, v) into our graph violates planarity
— can be done in general in O(n2/3) [10]. For a fixed embedding, planarity testing can be done in
O(log2 n) [6]. La Poutré showed an O(α(m,n) m + n) algorithm for a total of m operations with ·
an incremental graph in [12].

References

[1] Monika Rauch Henzinger, Valerie King: Randomized dynamic graph algorithms with polylog­
arithmic time per operation. STOC 1995: 519-527

[2] David Eppstein, Giuseppe F. Italiano, Roberto Tamassia, Robert Endre Tarjan, Jeffery West-
brook, Moti Yung: Maintenance of a Minimum Spanning Forest in a Dynamic Plane Graph.
J. Algorithms 13(1): 33-54 (1992)

[3] Mikkel Thorup: Near-optimal fully-dynamic graph connectivity. STOC 2000: 343-350

[4] Jacob Holm, Kristian de Lichtenberg, Mikkel Thorup:	 Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J.
ACM 48(4): 723-760 (2001)

[5] Mihai Patrascu, Erik D. Demaine: Lower bounds for dynamic connectivity. STOC 2004: 546­
553

[6] David Eppstein, Zvi Galil, Giuseppe F. Italiano, Amnon Nissenzweig: Sparsification - a tech­
nique for speeding up dynamic graph algorithms. J. ACM 44(5): 669-696 (1997)

[7] Mikkel Thorup: Decremental Dynamic Connectivity. J. Algorithms 33(2): 229-243 (1999)

[8] Mikkel Thorup: Fully-dynamic min-cut. STOC 2001: 224-230

[9] Dora	 Giammarresi, Giuseppe F. Italiano: Decremental 2- and 3-Connectivity on Planar
Graphs. Algorithmica 16(3): 263-287 (1996)

[10] Zvi Galil, Giuseppe F. Italiano, Neil Sarnak: Fully Dynamic Planarity Testing with Applica­
tions. J. ACM 46(1): 28-91 (1999)

5

[11] Giuseppe F. Italiano, Johannes A. La Poutré, Monika Rauch: Fully Dynamic Planarity Testing

in Planar Embedded Graphs (Extended Abstract). ESA 1993: 212-223

[12] Johannes A. La Poutré: Alpha-algorithms for incremental planarity testing (preliminary ver­

sion). STOC 1994: 706-715

[13] Neil Robertson, Paul D. Seymour: Graph Minors. XX. Wagner’s conjecture. J. Comb. Theory,
Ser. B 92(2): 325-357 (2004)

6

MIT OpenCourseWare
http://ocw.mit.edu

6.851 Advanced Data Structures
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

