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1 Overview 

In the previous lecture, we studied range trees and kd-trees, two structures which support efficient 
orthogonal range queries on a set of points. In this second of four lectures on geometric data 
structures, we will tie up a loose end from the last lecture — handling insertions and deletions. 
The main topic, however, will be two new structures addressing the vertical line stabbing problem: 
interval trees and segment trees. We will conclude with an application of vertical line stabbing to 
a windowing problem. 

2 Dynamization 

In our previous discussion of range trees, we assumed that the point set was static. On the other 
hand, we may be interested in supporting insertions and deletions as time progresses. Unfortunately, 
it is not trivial to modify our data structures to handle this dynamic scenario. We can, however, 
dynamize them using general techniques; the techniques and their application here are due to 
Overmars [1]. 

Idea. Overmars’ dynamization is based on the idea of decomposable searches. A search (X, q) 
for the value q among the keys X is decomposable if the search result can be obtained in O(1) 
time from the results of searching (X1, q) and (X2, q), where X1 ∪ X2 = X. For instance, in the 
2D kd-tree, the root node splits R2 into two halves. If we want to search for all points lying in a 
rectangle q, we may do this by combining the results of searching for q in each half. 

Results. We will bypass the actual dynamization method, and just give the results. 

– Insertion: O(T

n 
b log n), where Tb is the build time, the time required to build the static tree 

– Query: time increases by a log n factor 

Note that this is a general result, which applies to any data structure with a decomposable search. 
As a concrete example, here are the times for a dynamic 2D range tree: 

– Insertion: O(log2 n + k), where k is the size of the output, as always 

– Query: O(log2 n) 

We have only mentioned insertion time here; deletions are more complicated. 
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3 Vertical line stabbing 

We now move to the main focus of this lecture. In the vertical line stabbing problem, the input 
is a collection I = {[a1, b1], [a2, b2], . . . } of n closed intervals. We wish to be efficiently report, for 
any q ∈ R, the intervals containing q. The name “vertical line stabbing” derives from one way to 
visualize the problem: 

q 

3.1 Interval Tree 

Idea. One way to address the problem is through a divide-and-conquer approach. Consider the 
median m of the 2n endpoints in I. Some intervals may lie entirely to the left of m, some entirely 
to the right, and some may cross m. Those to the left and to the right can be dealt with recursively. 
On the other hand, the intervals crossing m seem problematic. Suppose we have a query q < m. 
We may sort the intervals crossing m by their left endpoints: 

q 

sort


q 

With this sorting, the intervals containing q can be listed easily, starting from the leftmost interval 
and stopping when we reach an interval lying to the right of q. All the intervals we examine, except 
for the last, contain q, so the searching process requires time linear in the output size. If q were on 
the right of m, instead, we would sort the intervals by their right endpoints. 

Example. Take I = {[1, 6], [3, 20], [3, 7], [5, 17], [10, 20], [13, 15]}. Taking 10 as the median of the 
endpoints, we have three classes of intervals: 

Il = {[1, 6], [3, 7]} (intervals left of median) 

Im = {[3, 20], [5, 17], [10, 20]} (intervals crossing median) 

Ir = {[13, 15]} (intervals right of median) 
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We now construct a binary tree for I, which will be its interval tree. We recursively store the 
interval trees for Il and Ir in the left and right children of the root node. Then, we put two copies 
of Im in the root node itself, one copy sorted by left endpoint, one by right endpoint: 

[10,20] 

[3,20] 

[5,17] 

[3,20] 

[5,17] 

[10,20] 

[13,15] [13,15] 

[3,7] 

[1,6] [3,7] 

[1,6] 

IrIl 

To search for 18, say, we first compare it to the median 10. We can ignore Il, since 18 > 10. Next, 
we search through Im, finding the intervals [3, 20] and [10, 20]. Finally, we recursively search for 18 
in Ir, where there are no matching intervals. 

Summary. The interval tree has the following characteristics: 

–	 Preprocessing: O(n log n). Sorting Im requires O(n log n) time, and the median of 2n end­
points can be found in O(n) time. 

–	 Storage: O(n). The tree structure takes up O(n) space; each interval appears in only one 
node, and appears exactly twice there, for O(n) total space. 

–	 Query: O(log n + k). Searching through the intervals of each node requires time linear in 
the output size, contributing O(k). The height of the tree is O(log n) due to the use of the 
median. 

We have seen how to construct and query an interval tree: 

–	 Construction: 

1.	 Split intervals among Il, Im, Ir. 

2.	 Handle Im with two sorted lists. 

3.	 Recursively construct Il, Ir. 

–	 Searching: 

1.	 Perform a binary search for q. 

2.	 Scan the Im lists for stabbed intervals. 
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3.2 Segment Tree 

Construction. The second data structure we will consider for vertical line stabbing is the segment 

tree. We start by defining the construction of a segment tree, with the same I used earlier as an 
example. The steps are as follows: 

•	 First, we split the real line into elementary intervals. If {c1, . . . , ck} is the set of endpoints in 
I in increasing order, the elementary intervals are the single points [ci, ci] together with the 
open intervals between them: (ci, ci+1). 

•	 We build a BST over the elementary intervals. Note that each node in the BST can be 
associated with the union of the elementary intervals belonging to the leaf nodes below it. 

1 3 5 6 7 10 13 15 17 20 

[5,5] (7,10) 

•	 As a first try, we store in each leaf node (elementary interval) the set of intervals in I containing 
that node’s interval. For instance, at the node for the (3, 5), we store {[1, 6], [3, 7], [3, 20]}. 
The query time is good: O(log n) for searching and O(k) for reporting. However, the storage 
required could be quadratic. 

•	 To improve the storage costs, we look to see if any two siblings store the same interval [ai, bi]. 
If so, we remove it from them and store it in their parent instead, and repeat until no two 
siblings store the same intervals. 

•	 After this process, the set of nodes storing any interval will subdivide that interval. In our 
example, [3, 7] will be stored in the nodes [3], (3, 5], and (5, 7]. This provides a canonical 
subdivision for each interval in I. 

Querying. To query this tree for q, we simply perform a binary search for q and report all 
intervals stored in the nodes we visit. This is quite different from the interval tree, where it was 
necessary to search through a list of potentially stabbed intervals. Here, every interval encountered 
is reported. The time required is O(log n + k), just as with interval trees. 

Storage. We claim that every level of the tree stores any interval at most twice. The proof is by 
contradiction. Suppose that some interval J is stored in at least three vertices v1, . . . , vk in some 
level, as depicted below. 
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v1 v2 v3 

J 

There cannot be any gaps between the subtrees rooted at each of these vertices, since J covers all 
of the real line between them. Therefore, some pair vi,vi+1 must be siblings, a contradiction. 

This claim shows that the segment tree requires O(n log n) storage. Although this seems worse than 
the interval tree, the segment tree has advantages for certain applications, as one of the homework 
problems shows. 

Preprocessing. First, we build the BST, which takes O(n) time. We can streamline the process 
of storing the intervals in the tree by inserting them one at a time. As an example, to insert the 
interval [3, 7], we search for 3 and 7. At some node vsplit, the search paths for 3 and 7 diverge. 
Continuing from vsplit to [3, 3], we can easily decide at each node whether [3, 7] should be stored 
(we will not worry about the details here). Similarly for the path from vsplit to [7, 7]. 

Altogether, storing the intervals requires O(n log n) time. 

Application: windowing 

Suppose we have a geometric data set containing a huge number of line segments, and want only 
the portion of this data lying within some window. For instance, we may have a state road map 
and need to a small portion of it for viewing in a GPS. We need to report all line segments that 
intersect W . There are two parts to this: finding everything with 1 or 2 endpoints inside W (part 
A), and finding everything that intersects the border of W twice (part B). 

Part A. This is really a range query, so we can use a 2D orthogonal range tree on the endpoints. 
We need to take care if a line segment has 2 endpoints in W , to avoid reporting line segments twice. 

Part B. For simplicity, we consider the case of orthogonal line segments (every segment is either 
horizontal or vertical). The next figure illustrates that we can check for horizontal lines crossing 
W using vertical line stabbing: 
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However, we need to get rid of the intervals lying above or below W . We will consider two ap­
proaches to doing so. 

1. We form an interval tree for the horizontal lines, but store a 2D range tree with their y-values 
instead of the pair of sorted lists. Queries only require O(log2 n + k) time, but the storage 
requirements are bad. 

2. We use a priority search tree, described next. 

4.1 Priority search trees 

A priority search tree is a mixture of a BST and a heap. Like 2D range trees, these trees represent a 
2D point set {p1, p2, . . . }. Unlike 2D range trees, the queries for a priority search tree are rectangles 
with one open side: (−∞, xmax] × [ymin, ymax]. 

Construction. We store a point with least x-coordinate in the root of the tree, and let ym be 
the median of the remaining y-coordinates. In the left subtree, we store points with y < ym in a 
priority search tree, and in the right subtree, the points with y ≥ ym. The next picture provides 
an example of this construction. 

p1 

p2 
p4 

p3 

p5 

p6 

p7 
p8 

p9 

p1 

p2 p9 

p3p4 

p5 

p6 p8 

p7 

ym 

Queries. We search for ymin, ymax. Intuitively, we want to check all points along both search 
paths to see if they lie in the query region. More precisely, if vsplit is the point where the two paths 
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diverge, we go from vsplit to ymin, reporting all right subtrees recursively, and stopping if we reach 
a node with x-coordinate greater than xmax. 

A priority search tree has the following characteristics: 

– Preprocessing: O(n log n) to sort the x and y coordinates 

– Storage: O(n) 

– Query: O(log n + k) 

As indicated earlier, we can modify an interval tree to store a priority search tree in each node, 
instead of sorted lists. This structure solves Part B for orthogonal line segments. If the line 
segments are not orthogonal, we can use segment trees instead (homework). 
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