6.851 ADVANCED DATA STRUCTURES (SPRING'10)

Prof. Erik Demaine

Dr. André Schulz

TA: Aleksandar Zlateski

Problem 7

Sample Solutions

Finding the most significant 1 bit.

(a) We define $C_0 = 0^b$, and $(C_1) = 10^{b-1} A_x = [x \mid (x + \tilde{C}_1)] & C_1$

STEP-A(x)

- $1 \quad A_x \leftarrow x + 01^{b-1}$
- $2 \quad A_x \leftarrow A_x \mid x$
- 3 **return** $A_x \& 10^{b-1}$

(b)
$$B_x = ((A_x >> (b-1)) * (0^b 1)^{b-1} >> (w-b)) & 1^b$$

Steps-ab(x)

- 1 $A_x \leftarrow \text{STEP-A}(x)$
- $2 \quad B_x \leftarrow A_x >> (b-1)$
- 3 $B_x \leftarrow (B_x * [0^b 1]^{b-1}) >> (w-b)$
- 4 return $B_x \& 1^b$
- (c) Note that the order of the chunks has changed in part (b). We need to find the *least* significant 1 bit. Also, not that $-x = \tilde{x} + 1$.

$$C_x = b - (B_x \& -B_x)$$

STEPS-ABC(x)

- 1 $B_x \leftarrow \text{STEP-B}(x)$
- $2 \quad C_x \leftarrow B_x \& -B_x$
- 3 return $b C_x$
- (d) Let $\alpha = \sum_{i=0}^{b-1} (1 \ll i) \ll i$, then by setting $y = (x \gg C_x) \& 1^b$, and $z = (y * [0^{b-1}1]^b) \& \alpha$, we have reduced the problem to parts (a)-(c).

Full Algorithm

Most-Significant(x)

- 1 $C_x \leftarrow \text{STEPS-ABC}(x)$
- $2 \quad y \leftarrow (x >> C_x) \& 1^b$
- $z \leftarrow (y * [0^{b-1}1]^b) \& \alpha$
- 4 $C_z \leftarrow \text{STEPS-ABC}(z)$
- 5 return $(C_x \lt b + C_z)$

MIT OpenCourseWare http://ocw.mit.edu

6.851 Advanced Data Structures Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.