6.851 ADVANCED DATA STRUCTURES (SPRING’10)
Prof. Erik Demaine Dr. André Schulz TA: Aleksandar Zlateski

Problem 6| Sample Solutions

Dynamizing static search structures.

(a) To perform a successor search we start from the root node, perform a search for a successor
and follow the link to it’s left until we reach a leaf node.
The runtime recurrence is then: T'(n) = S(©(n'/¢)) + T(O(n'~1/¢))

For fusion trees we have:
T(n) = O(logw nl/C) + T(@(nl_l/c))
T(n) = O(c ' log, n) + O(c log,, n* V¢ + T(©(n1-1/9%)))

Hence

Zc Uog,, n'~ 1/0 = Zc_l —1/¢)tlog,, n)
T(n) = O(cclog,n) = O(log,, n)

(b) The space reccurence is: C(n) = ©(n'/¢)(C(n~1/9)) +1). Since we have ©(n!/¢) subtrees of
size O(n(1=1/)) plus ©(n'/¢) for the space at the current level. We see that the reccurence solves

to C(n) = O(n).
(c) We will constrain the number of nodes in a subtree rooted at a node at depth d to be

k= 0(nt-1/9%

When inserting or deleting a node, we make sure that all the nodes on our path satisfy the
given property. when merging or splitting a node with k children we have to reconstruct its parent.
The node’s parent will have ©(k“/(¢~1)) descendands, and ©(k'/(¢=1) children. Thus, rebuilding
the parent would take O(k¥/¢~1).

At any given level, we have to rebuild the node only after O(k) descendands have been in-
serted /removed. Hence the amortized cost is O(kﬁfl). Choosing % —1<=0,c>b+1 gives
us O(1) amortized cost per level, and the total of O(loglogn)



MIT OpenCourseWare

6.851 Advanced Data Structures
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.


http://ocw.mit.edu/terms
http://ocw.mit.edu



