
1.00 Tutorial 8


2D API, Model-View-Controller,

Applets, Matrices & Linear


Systems (1)




Today’s Schedule


• 2D API review 
– Exercise 1 

• MVC discussion 
– Exercise 2 

• Affine Transforms review 
• Matrices & Linear Systems

• A brief note on Applets 
• Problem Set 7 Discussion


– Exercise 3 



2D API

Exercise 1- Custom Drawing


•	 Identify top level window / 
containers / component 

•	 Where and what do we draw? 
- Identify the things we need to draw 
- Where do we draw them? 

•	 List the methods of 
Graphics2D that we need for 
the exercise 

•	 How de we set our own font? 

Source files called MyCanvas.java and Tutorial8.java 



Exercise 1- Answers

•	 Create a new class that extends 
JPanel

- Serve as a canvas for the custom drawing 

•	 Override paintComponent() 
- repaint() calls paintComponent() 
- Don’t invoke paintComponent() explicitly 

• Graphics2D class methods 
- drawString() 
- draw() 

•	Font class




Review - Custom Drawing


• Write a new class that extends

JPanel


• Override paintComponent()


public class MyCanvas extends JPanel {

...


public void paintComponent(Graphics g) {

...


}


}


Source files called MyCanvas.java and Tutorial8.java




Review - First Things First


• Invoke super.paintComponent(g)

• Cast g to a Graphics2D object 

public void paintComponent(Graphics g) {


super.paintComponent(g);

Graphics2D g2 = (Graphics2D)g;


// Start drawing


}


Source files called MyCanvas.java and Tutorial8.java 



Review - What Can We Draw?


• String

Font myFont = new Font(“Monospaced”, Font.BOLD, 12);

g2.setFont(myFont);

g2.drawString(“Draw This”, 100, 200);


• Shape (interface)

- Known implementing classes: 
Line2D, Rectangle2D, Ellipse2D 

Shape s = new Rectangle2D.Double(10, 10, 20, 30);

Shape c = new Ellipse2D.Double(30, 40, 10, 10);

g2.draw(s);

g2.fill(c);




Review - What Can We Draw?


Point2D


Li l

Elli l

Shape 

ne2D Rectangu ar 
Shape 

pse2D Rectang e2D 



Model-View-Controller Paradigm

MVC programs are composed of 3 segments:


• the View manages the visible output (graphical /

textual). Knows only about info display (ideally,

has no domain knowledge).


• the Model models the domain of interest. It knows 
nothing about info display. Rather, it: 

–Responds to the View’s requests for state

–Responds to the Controller’s requests to


change state

• the Controller ties the Model and View together,


instructing each to change as necessary in

response to user actions and inputs.




Model-View-Controller in PS7

•	 Model-View-Controller paradigm separates 

responsibility: 
– The model (CatenaryModel) performs the


catenary calculations from problem set 2. It

contains no user interface code.


– The view (CatenaryView) is the UI code. It draws 
lines, paints text, and in general displays a visual 
representation of the model. It contains a reference 
to the model. 

– The controller (CatenaryController) contains 
the event listeners: the code that runs when the 
user interacts with the program. It can modify the 
model and the view. 



Exercise 2 – 2D API as MVC


Here we will 
• Apply MVC to the example in Exercise 1

• Write code to 

– add a CanvasModel data member to the view

(MyCanvas2) and the controller

(CanvasController).


– Add a MyCanvas2 data member and a JTextField 
to the controller. 

– complete the button’s anonymous ActionListener 
to instantiate both the model and the view and to use 
the string in the JTextField in the model 

– complete the view’s paintComponent() so that the 
inverted string is printed 100 pixels below the original 
string 



Affine Transformations

from Sun’s Javadoc for AffineTransform 

•	 A linear mapping from 2D coordinates to 
another set of 2D coordinates that 
preserves the "straightness" and 
"parallelness" of lines. 

•	 Affine transformations can be constructed 
using sequences of translations, scales, 
flips, rotations, and shears. 



Affine Transformations


translation flip rotation 



Affine Transformations


scaling shear
 identity 



Affine Transformations

•	 An Affine Transform simply 

encapsulates a 3 x 3 matrix for a 
given transformation. 

•	 Approaches: 
1.	 Apply AffineTransform using 

Graphics2D’s transform 
method using (as seen in lecture). 

2.	 You may also use 
AffineTransform’s 
createTransformedShape

method to create a new,

transformed shape from an old

one. Then you can draw the

shape.


Source files called TranslatePanel.java, ScalePanel.java, RotatePanel.java 
and TransformMain.java 



Affine Transformations - Review

•	 When we transform a shape, 

we transform each of the 
defining points of the shape, 
and then redraw it. 

•	 If we scale or rotate a shape 
that is not anchored at the 
origin, it will translate as 
well. 

•	 If we just want to scale or 
rotate, then we should 
translate back to the origin, 
scale or rotate, and then 
translate back. 

Source files called TranslatePanel.java, ScalePanel.java, RotatePanel.java 
and TransformMain.java 



Matrices & Linear Systems (1)


•	 Matrices often used to 
represent a set of 
linear equations 

•	 Coefficients a and 
right hand side b are 
known 

•	 n unknowns x related 
to each other by m 
equations 



Matrices & Linear Systems (1)

•	 If n=m, we will try to solve for unique set of x. 
•	 Obstacles: 

– If any row (equation) or column (variables) is a linear 
combination of others, matrix is degenerate or not of full 
rank. No solution. 
– If rows or columns are nearly linear combinations, 
roundoff errors can make them linearly dependent. 
Failure to solve although solution might exist. 
– Roundoff errors can accumulate rapidly. While you 
may get a solution, when you substitute it into your 
equation system, you’ll find it’s not a solution. 

•	 JAVA has 2D arrays for defining matrices. However, are 
no built-in methods for them 



Applets


•	 Applets are programs embedded in web 
pages or run in an Applet viewer 

•	 All applets are subclasses of the JApplet 
class 

•	 Viewing Applets in Eclipse: Run->Run As 
->Java Applet 

•	 Recall lecture directions on converting 
Java Applications to Java Applets 



A Sample Applet

//Welcome.java

import javax.swing.*;

import java.awt.*;


public class Welcome extends JApplet {

public void paint(Graphics g) {


super.paint(g);

Graphics2D g2 = (Graphics2D)g;

g2.drawString("Welcome to Spring 2005 1.00 / 1.001", 10,


25);

}


} 

Source files called Welcome.java and welcome.html




Applet Resources

•	 The Java Tutorial : List of Applets 

http://java.sun.com/docs/books/tutorial/listofapplets.html 
–	 Tutorials on applets produced by Java for several releases of the 

program 
–	 Includes links to sample applets 

•	 Applets (at java.sun.com) http://java.sun.com/applets/ 
–	 A resource center for applet development 
–	 Links to sample code and applications. 

•	 HTML Design at w3schools.com 
http://www.w3schools.com/html/default.asp 
–	 Free webpage development tutorials and resources 



Homework 7 – UI for Catenary

Height


• Continuation of Homework 6 
– Construct a Swing UI for Homework 2 



Homework 7 Continued


• Three pieces to the puzzle:

– CatenaryModel: Does the number crunching for 

the model 
– CatenaryView: Inherits from JPanel and has 

methods for drawing the catenary, given a 
CatenaryModel instance 

– CatenaryController: Inherits from JFrame and 
has methods for creating the CatenaryModel and 
CatenaryView instances 



Homework 7 Continued


• By now you must have implemented 
– CatenaryModel


•	 Must be completely implemented 
– CatenaryController


•	 Just the input and parsing components, creating instances of 
CatenaryModel and CatenaryView 

• Now you need to implement 
– CatenaryView


•	 Write constructor and data members (CatenaryModel) 
•	 Complete the paintComponent() method – draw the catenary, 

axes, text labels 
– CatenaryController


•	Complete the actionListener() for the Calculate button – 
create a new CatenaryModel or update the model parameters 

•	 Similarly, create a new CatenaryView instance or update the 
existing view 



Homework 7 Continued

– Exercise 3


•	 How do we draw the axes? 
(CatenaryModel.paintComponent) 
–	Recall (0,0) is top left corner 
– The center of the view will vary as the window is 

resized. 

•	 How do we make the “Quit” button functional

–	Must use anonymous inner class 
– Hint: how did we exit a program at the beginning of 

the semester? 


