1.00 Tutorial 8

2D API, Model-View-Controller,
Applets, Matrices & Linear

Systems (1)

Today’s Schedule

2D API review
— Exercise 1

MVC discussion
— Exercise 2

Affine Transforms review
Matrices & Linear Systems
A brief note on Applets

Problem Set 7 Discussion
— Exercise 3

2D API
Exercise 1- Custom Drawing

Identify top level window /
containers / component T

Where and what do we draw? 1.00 Tutorial 8

- Identify the things we need to draw
- Where do we draw them?

Draw

List the methods of
Graphics2D that we need for

the exercise

How de we set our own font?

Source files called MyCanvas.java and Tutorial8.java

Exercise 1- Answers

 Create a new class that extends
JPanel

- Serve as a canvas for the custom drawing
* Override paintComponent ()

- repaint () calls paintComponent ()

- Don’t invoke paintComponent () explicitly
- Graphics2D class methods

- drawString ()

- draw ()

. Font class

Review - Custom Drawing

 Write a new class that extends
JPanel

 Override paintComponent ()

public class MyCanvas extends JPanel ({

public void paintComponent (Graphics g) {

}

Source files called MyCanvas.java and Tutorial8.java

Review - First Things First

* Invoke super.paintComponent (g)
 Cast gto a Graphics2D object

public voild paintComponent (Graphics g) {

super .paintComponent (g) ;
Graphics2D g2 = (Graphics2D)g;

// Start drawing

Source files called MyCanvas.java and Tutorial8.java

Review - What Can We Draw?

« String
Font myFont = new Font (“Monospaced”, Font.BOLD, 12);

g2.setFont (myFont) ;
g2.drawString (“Draw This”, 100, 200);

« Shape (interface)
- Known implementing classes:
Line2D, Rectangle2D, Ellipse2D

Shape s new Rectangle2D.Double (10, 10, 20, 30);
Shape ¢ = new Ellipse2D.Double (30, 40, 10, 10);
g2.draw(s) ;
g2.fill(c);

Review - What Can We Draw?

Point2D : Shape

I

Rectangular
Shape

| I

Line2D

Ellipse2D Rectangle2D

Model-View-Controller Paradigm

MVC programs are composed of 3 segments:

 the View manages the visible output (graphical /
textual). Knows only about info display (ideally,
has no domain knowledge).

* the Model models the domain of interest. It knows
nothing about info display. Rather, it:

—Responds to the View's requests for state

—Responds to the Controller’s requests to
change state

 the Controller ties the Model and View together,
Instructing each to change as necessary in
response to user actions and inputs.

Model-View-Controller in PS7

« Model-View-Controller paradigm separates
responsibility:
— The model (CatenaryModel) performs the

catenary calculations from problem set 2. |t
contains no user interface code.

— The view (CatenaryView) is the Ul code. It draws

lines, paints text, and in general displays a visual

representation of the model. It contains a reference
to the model.

— The controller (CatenaryController) contains

the event listeners: the code that runs when the

user interacts with the program. It can modify the
model and the view.

Exercise 2 — 2D APl as MVC

Here we will
* Apply MVC to the example in Exercise 1

 Write code to

— add a CanvasModel data member to the view
(MyCanvas?2) and the controller
(CanvasController).

— Add a MyCanvas?2 data member and a JTextField
to the controller.

— complete the button’s anonymous ActionListener
to instantiate both the model and the view and to use
the string in the JTextField inthe model

— complete the view’s paintComponent () S0 that the
inverted string is printed 100 pixels below the original
string

Affine Transformations

from Sun’s Javadoc for AffineTransform

A linear mapping from 2D coordinates to
another set of 2D coordinates that
preserves the "straightness" and
"parallelness” of lines.

 Affine transformations can be constructed
using sequences of translations, scales,
flips, rotations, and shears.

Affine Transformations

Affine Transformations

scaling shear identity

Affine Transformations

« An Affine Transform simply :
encapsulates a 3 x 3 matrix for a Translation
given transformation.

« Approaches:

1. Apply Affine Transform using 10 ¢t xl [xst
Graphics2D’s transform X X

method using (as seen in lecture).

2. You may also use 00 1
AffineTransform’s
createTransformedShape
method to create a new,
transformed shape from an old
one. Then you can draw the
shape.

Source files called TranslatePanel.java, ScalePanel.java, RotatePanel.java
and TransformMain.java

Affine Transformations - Review

 When we transform a shape,
we transform each of the
defining points of the shape,

1. translate to origin

and then redraw it. 2. rotate
: 3. translate back
- If we scale or rotate a shape <
that is not anchored at the >
origin, it will translate as {./ "
well.

- If we just want to scale or
rotate, then we should
translate back to the origin,
scale or rotate, and then
translate back.

Source files called TranslatePanel.java, ScalePanel.java, RotatePanel.java
and TransformMain.java

Matrices & Linear Systems (1)

 Matrices often used to

represent a set of
linear equations

* Coefficients a and
right hand side b are
known

* n unknowns x related
to each other by m
equations

ko tagX tapk tot Ak, = by
g tagX tagt. A X, = b

A%t Ang Xy FAng Ko o F A K = B

dgg gy g g3 CI X by
da a a a a X I:}1
10 1 12 13... 1,n-1 1
Ay ay, a,, ;. 8Ayng X, [= |b2
A0 A1 Anq2 Apaa.. Apena X4 By 4
(m rows x n cols) (nx1) =(mxA1)

Ax=b

Matrices & Linear Systems (1)

* |f n=m, we will try to solve for unique set of x.
« Obstacles:

— If any row (equation) or column (variables) is a linear
combination of others, matrix is degenerate or not of full
rank. No solution.

— If rows or columns are nearly linear combinations,
roundoff errors can make them linearly dependent.
Failure to solve although solution might exist.

— Roundoff errors can accumulate rapidly. While you
may get a solution, when you substitute it into your
equation system, you'll find it's not a solution.

« JAVA has 2D arrays for defining matrices. However, are
no built-in methods for them

Applets

Applets are programs embedded in web
pages or run in an Applet viewer

All applets are subclasses of the JApplet
class

Viewing Applets in Eclipse: Run->Run As
->Java Applet

Recall lecture directions on converting
Java Applications to Java Applets

A Sample Applet

//Welcome. java
import javax.swilng.*;
import Java.awt.*;

public class Welcome extends JApplet {
public void paint (Graphics g) {
super.paint (g) ;
Graphics2D g2 = (Graphics2D)g;
g2.drawString ("Welcome to Spring 2005 1.00 / 1.001"™, 10,

& Applet Viewer: Welcome.class IZI[E”E
Applet

Welcome to Spring 2005 1.0071.001

Applet started.

Source files called Welcome.java and welcome.html

Applet Resources

The Java Tutorial : List of Applets
http://java.sun.com/docs/books/tutorial/listofapplets.himl

— Tutorials on applets produced by Java for several releases of the
program

— Includes links to sample applets

Applets (at java.sun.com) hitp://java.sun.com/applets/
— A resource center for applet development
— Links to sample code and applications.

HTML Design at w3schools.com
http://www.w3schools.com/html/default.asp
— Free webpage development tutorials and resources

Homework 7 — Ul for Catenary
Height

« Continuation of Homework 6
— Construct a Swing Ul for Homework 2

I [l s

Tension = 50.1623310521245

Homework 7 Continued

* Three pieces to the puzzle:

- CatenaryModel: Does the number crunching for
the model

— CatenaryView: Inherits from JPanel and has

methods for drawing the catenary, given a
CatenaryModel instance

— CatenaryController: Inherits from JFrame and
has methods for creating the CatenaryModel and
CatenaryView instances

Homework 7 Continued

« By now you must have implemented
— CatenaryModel
« Must be completely implemented
— CatenaryController
 Just the input and parsing components, creating instances of
CatenaryModel and CatenaryView

 Now you need to implement

— CatenaryView
» Write constructor and data members (CatenaryModel)

« Complete the paintComponent() method — draw the catenary,
axes, text labels

— CatenaryController

« Complete the actionListener() for the Calculate button —
create a new CatenaryModel or update the model parameters

« Similarly, create a new CatenaryView instance or update the
existing view

Homework 7 Continued
— Exercise 3

* How do we draw the axes?
(CatenaryModel.paintComponent)
— Recall (0,0) is top left corner

— The center of the view will vary as the window is
resized.

« How do we make the “Quit” button functional

— Must use anonymous inner class

— Hint: how did we exit a program at the beginning of
the semester?

