
1

1.00 Tutorial 4

Access, Static, Arrays, ArrayLists

2

Things to be discussed….

• Quiz 1 Logistics
• Concepts/key ideas you don’t

understand !
• Access
• Static data and Static methods
• Arrays and ArrayLists
• Exercise using Eclipse

– Please download today's Exercise Example
from MIT server if you haven’t.

3

Quiz 1 Logistics

• Friday March 4 class time (3 to
4.30pm)

• Topics Included
– Lectures 1 to 11
– PS 1 to PS 3

• Open Book, Open Notes, NO
Laptops

• Optional Quiz 1 Review on March 2
(7-9pm).

4

Stuff

• How to import external files into an
eclipse project

• How to use javadoc (either on the
computer or on the website)

5

Access

• private
– only visible to methods which belong to

the same class

• package/default (no access
modifier)
– only visible to methods which belong to

the same package

• public
– visible to all methods

6

Static

• Static members:
– are not associated with any particular

instance of the class—one copy shared by
all instances

– are accessible to both static and non-static
methods

• Static Methods:
– may only access static members, not

instance members
– -may be called using

Classname.methodName() or
objectReference.methodName()

7

When to Use Static Methods

• When no access to any instance field is
required. Usually one of two scenarios:
– The method takes in all the information it

needs as parameters:
Math.pow(double base, double exp)

– Or, the method needs access to only static
variables.

8

Arrays vs. ArrayLists

• Arrays are fixed in
size;

• Arrays can hold
both Objects and
primitive types;

• Arrays can only
hold elements of
the same type.

• ArrayLists can grow
as needed

• ArrayLists can hold
only Objects (no
primitives types!)

• ArrayLists can hold
Objects of different
types

9

Using Arrays

Three things to do:
• Declare an array

Integer[] myIntObject; // Array of Object
 int[] myIntPrimitive ; //Array of primitive data

• Create an array
myIntObject = new Integer[2];
myIntPrimitive = new int[2];

• Create/initialize each object in the array
myIntObject[0] = new Integer(1);
myIntObject[1] = new Integer(2);
myIntPrimitive[0]= 1;
myIntPrimitive[1]= 2;

10

Shortcuts

• Declaring and creating in one step:
Integer[] myInts=new Integer[2];

• Sometimes can declare, create, and initialize
all in one step!
/* Creates an object w/o new keyword! */
int[] powers={0,1,10,100};
int[] powers = {0,1,10,100};
String[] tas = {“Sakda”, “Felicia”};
Integer[] ints = {new Integer(1), new Integer
(10)};

• Use arrayName.length to get # elements

11

Using ArrayLists
• javadoc!

• Must import java.util.*;
• Common constructors: (is an example of constructor

overloading)
– public ArrayList()
– public ArrayList(int initialCapacity)

• Adding to a ArrayList
– public boolean add(Object o)
– public void add(int index,Object o)

• Getting things out
– public Object get(int index)
– Must cast object back to its real type!

String someObj=(String)someArrayList.get(1);

• Other methods:
• int size()
• Object set(int index, Object obj)
• Object remove(int index)
• boolean isEmpty()
• ………

12

Exercise Overview

• Description
– We want to calculate the total cost on tuition and books for

MIT students, where
Total cost = tuition + (sum of cost of textbooks of all the

courses taken)
• For a particular student, the output should have the

following format
Courses for Student with ID : 123
Course No 1.00 , Book price = $80.0
Course No 2.00 , Book price = $120.0
Course No 6.00 , Book price = $208.0
MIT tuition : $15300.0
TOTAL COST = $15708.0
================================

• We will model the problem using the following java
classes
– Student, Course & StudentTest (main() method)

13

Let’s get started !

Create Student Class
• Write the Student class with the following

private data members
• Student Name,
• Student ID.

• Add to the class a constant data member to
represent MIT tuition.

• What type of data member should be used ?? Why ??
• Assign it a constant value of 15300.0

• Write the class constructor
• Provide any getXXX and setXXX methods.

 You can generate get and set methods in eclipse
using Source->Generate Getters and Setters.

14

Student Class
public class Student {

 private String name;
 private int id;

 public static final double TUITION = 15300.0;

 public Student(String n, int i) {
 name = n;
 id =i; }

 public int getId() { return id; }
 public String getName() { return name; }
 public void setId(int i) { id = i; }
 public void setName(String string) {

name = string; }
}

15

Create CourseTaken Class

• Write the CourseTaken class with
private data members as

• Course number,
• Text book name
• Text book cost

• Write the class constructor
• Provide any getXXX and setXXX

methods.

16

CourseTaken class

public class CourseTaken {
 double bookPrice;
 String bookName;
 String courseNo;

 public CourseTaken(String no, double bp, String bN) {
 bookPrice = bp;
 courseNo = no;
 bookName = bN;}

 public double getBookPrice() { return bookPrice;}
 public String getCourseNo() {return courseNo;}
 public String getBookName() {return bookName;}
 public void setBookPrice(double d) {bookPrice = d;}
 public void setCourseNo(String string) {courseNo = string;}
 public void setBookName(String string) {bookName = string;}

}

17

StudentTest Class (1 of 3)

• Write a StudentTest class with the main() method
• In the main method,

• Create 3 Student objects and store them in a
ArrayList.

• Create an array of 3 CourseTaken objects.

• Now, compile before continuing!
• Use debugger to step through the code to read your

code, even if you think it’s correct, to check it.

18

StudentTest Class Code
public class StudentTest {

 public static void main(String[] args) {
 //Create a List of Student Objects and stores in a
ArrayList
 Student s1 = new Student(“Student1", 123);
 Student s2 = new Student(" Student2 ", 234);
 Student s3 = new Student(" Student3 ", 345);
 ArrayList students = new ArrayList();
 students.add(s1);
 students.add(s2);
 students.add(s3);

 //MIT Courses
 CourseTaken[] course = new CourseTaken[3];
 course[0] = new CourseTaken("1.00", 80.0, "Big Java");
 course[1] = new CourseTaken("2.00", 120.0, “Mechanical");
 course[2] = new CourseTaken(“6.00", 90.0, “Computer Sc");
 //We will adding more code here

 }
}

19

StudentTest Class (2 of 3)

 You are given the code skeleton of StudentTest class for
this task.
main method continued….
– Prompt user to enter student ID using JOptionPane and store the

ID using an int variable. Entry of 0 for ID indicates end of user
input

– For each student with non zero ID,
• Create a variable for total cost with initial value = value of MIT tuition

– How will you access the data member TUITION defined in Student
Class ?

• Initialize a ArrayList v . (This will maintain a list of all coursesTaken
objects for the student).

• Prompt for courses taken.
– End of course taken entry is indicated by 0.

• For each course entered,
– Retrieve the CourseTaken object corresponding to course number entered.
– Add the book cost for the course to total cost variable
– Store the retrieved courseTaken objects in the ArrayList v

• Print all the necessary information for the students using the ArrayList
v and the “total cost” variable.

Please complete the main method.

20

StudentTest Class Code Skeleton……
public class StudentTest {
 public static void main(String[] args) {

 int id = 0;
 do {
 String sid = JOptionPane.showInputDialog("Enter the Student ID. Enter 0 when done");
 id = Integer.parseInt(sid);
 if(id != 0) { //For Students with non zero IDs

 A. Initialse a ArrayList v

 double totalCost = ??? //SET THIS EQUAL TO THE TUITON DEFINED IN STUDENT CLASS
 String s = "0";
 do {
 s = JOptionPane.showInputDialog("Enter the course No. Enter 0 when done");

 for (int j = 0; j < course.length; j++) {

 B. For each of the CourseTaken Object
 - If the course no equals user input course No s:

 . add the book cost for that course to total cost.
 . Store the retrieved courseTaken objects in the ArrayList v

 } } while (!s.equals("0"));
 System.out.println("Courses for Student with ID : " + id);

 C. - Retrieve “CourseTaken” objects stored in v and
 - Print its course no and bookprice

 System.out.println("MIT tuition : $”+ Student.TUITION);
 System.out.println("TOTAL COST = $“+totalCost);
 } //end of check for non Zero IDS
 } while (id != 0);
 } } //end of class

21

StudentTest Class (3 of 3)

• Compile and run
– The Output should have the following

format
Courses for Student with ID : 123

Course No 1.00 , Book price = $80.0

Course No 2.00 , Book price = $120.0

Course No 5.00 , Book price = $208.0

MIT tuition : $15300.0

TOTAL COST = $15708.0

================================

Step through your code using the
debugger

