
1.00 Lecture 2

Interactive Development
Environment: Eclipse

Reading for next time: Big Java: sections 3.1-3.9

What’s an IDE?

• An integrated development environment
(IDE) is an environment in which the user
performs the core development tasks:
– Naming and creating files to store a program
– Writing code (in Java or another language)
– Compiling code (check correctness, generate

executable program)
–
–

code generation, etc.

• Eclipse is a popular Java IDE
–
– People write better software with an IDE

(Pretend the method is main() in each example)

Debugging and testing the code
And many other tasks: version control, projects,

You must use it in 1.00 homework, lecture, tutorial

What Do IDEs Do?

•	 What does an IDE provide?
–	 Visual representation of program components
–	 Ability to browse existing components easily, so you can

find ones to reuse
–	 Quick access to help, documentation to use existing

libraries and tools vs writing your own
–	 Better feedback and error messages when there are errors

in your program
–	 A debugger, which is not primarily used to debug, but is

used to read and verify code
–	 Communication between programmers in a team, who

share a common view of the program

•	 Your programs in 1.00 are small, but Eclipse will
make life much easier
–	 In large projects, the benefits are greater still

Starting Eclipse

•	 Start Eclipse by double clicking the icon on your
desktop.

•	 Identify all the interface areas labeled on the next
slide.
–	 The Main Window is the command center, holding

menus, tabs, and buttons.

–	 The Explorer allows you to manage files and sets of files
(projects) that form programs.

–	 The working area holds editor, compiler, output or

debugger windows as appropriate.

Anatomy of Eclipse

Main Window

Explorer Working Area

Creating a Project

Choose File->New->Project

Make sure ‘Java’ is highlighted,
then click ‘Next’

Creating a Project (2)

A ‘New Java Project’
page appears

Project name: Lecture2

Your project folder will be in folder eclipse/workspace
Hit ‘Finish’

Creating a Class

Select ‘Class’, hit ‘Next’
Type class name: NauticalMile

Hit ‘Finish’

main() is
a method

Make sure ‘Create project in workspace’ is checked

File->New->Class (or click ‘New’ icon)

Make sure ‘public static void main…’ is checked

The NauticalMile Program

• A nautical mile is defined as the average length of
a 1 minute arc of latitude on the earth's surface.

• The circumference of the earth is 24859.82 statute
miles

• A statute mile contains 5280 feet
• The circumference is 360 degrees, and each

degree contains 60 minutes
• Calculate the length of a nautical mile in feet as:

_number of feet in circumference__
number of minutes in circumference

• Be careful about data types and division!
• Output your answer using System.out.println(…);

NM=

NauticalMile.java

double circum = 24859.82*5280;

// This is a comment

System.out.println(

"Feet in a nautical mile = " + nautMile);

}

}

• Write this program in Eclipse
•

• Save it (ctrl-S or File->Save); Eclipse will compile
• If you get any errors, fix them!
• After it compiles, make some errors, experiment

public class NauticalMile {

public static void main(String [] args) {

int minutesInCircle = 360*60;

double nautMile = circum / minutesInCircle;

Delete the Eclipse-generated comments at top

Compile Time Errors

• Remove the semicolon from the end of the line
that starts

double circum

• Look in the Tasks window at the bottom. You
should see:
Syntax error on keyword "int"; ";" expected

line 5

with a wavy line where the error was detected and
an X at the margin.

• Click on error message and the corresponding
line will be highlighted in the source file.
– Fix the error.

Running NauticalMile in
Eclipse

• Once you’re able to save with no errors, select
Run->Run As-> Java Application

• Save changes if prompted (OK)

• Working area changes from editor to output view

NauticalMile.java Lecture2

Neat Things About Eclipse

• Key words are highlighted.

•
you place your mouse over them.

• Type into the window to mess up the alignment of
the text lines. Then right click in the editor window
and select Source->Format. It will realign your
margins.

• Get full documentation of Java methods:
– Place cursor on any method or class

– Hit Navigate-> Open External Javadoc

–

Reading Your Program

• Select Run->Debug As-> Java Application
• Your NauticalMile program will run to

completion and now the “Debug Perspective”
displays, as shown on the next page
–

the program

• You’ll use this a lot to read and correct (debug)
your programs

Java built-in classes have ‘tool tips’ that show when

If you don’t have this enabled, install Javadoc

You had been in the “Java Perspective” when writing

Eclipse Debug Perspective
Main Window

Status Variables

Program code

Console output

Call
stack

Reading NauticalMile

• Go back to Java Perspective
– Window->Open Perspective->Java
– Or use the icon on the upper left margin

• Set a breakpoint to stop your program at or near
its beginning
– Right click on the left margin of the text editor at the

desired line (double circum= …)

– Select “Add Breakpoint”

• Select Run->Debug Last Launched
– Or Run->Debug As->Java Application, as before

• Eclipse displays the Debug Perspective
– Your program stops at the breakpoint line

Stepping Through

• Now step through

–
or hit F6

– (Later we’ll use ‘Step Into’
and ‘Step Return’)

• Variable values display in
the Variables window

Stepping Through, 2

• The Step buttons are a functional family unit:
– Step Into means stop at every line of code including

following method calls.

–

–
and stop when the method returns.

– (All we have is a single main() method right now, but
we’ll have a lot more soon!)

• Click Step Over

NauticalMile line by line
Use the ‘Step Over’ icon

Step Over means stop at every line of code in the
current method but execute method calls in one step.

Step Return means run everything in the current method

Examining Variable Values
• In the top right frame of the

Debugging View, you'll see
the variables

• Click Step Over once more to
advance another line. You
should see that you just
defined another variable,
minutesInCircle.

• Set another breakpoint at the
last line (System.out…)

• Click the Resume button

• The program stops at the last
line.

• Click Resume or Step Over
– The program output appears,

Breakpoints

• What if you are trying to figure out what is wrong
with a homework program that’s about 100 lines
long?
– Set a breakpoint at the beginning.
– Run->Debug As->Java Application
–

–
• Don’t fix it in Java Debug Perspective

– Set a breakpoint at the line you fixed
–
– The program will run to the line you fixed
–

• You can right click and select ‘Remove

and the program exits.

Terminate

Step Over line by line looking at variable values until
you find an error
Go back to Java Perspective, fix the error, save the file

Run->Debug Last Launched

Resume using Step Over from there

Breakpoint’ to get rid of unneeded ones

Exiting the Debugger

•
your program to run to completion.

•
button

• Occasionally you need to clean up the Status (Debug)

– Right click in the Debug Window

– Select Remove All Terminated

– If something is still there, right click on it

– Select Terminate and Remove

Managing Files in a Project

• Deleting files:
–

• Adding files:
– Same as the first one: File->New Class and so on.

–

Sometimes you want to exit the debugger without allowing

Just click the Terminate button (square) near the Resume

window in the upper left frame

Go back to the Java Perspective, and right click
NauticalMile. Select Delete.

Later in the term you’ll add other kinds of files to a
project.

Exercise

•
foot) mile

• To do this:
– Create a new class called MileConvert in the same project
– Using whatever you want to cut and paste from

NauticalMile, create the code to calculate how many miles
there are in a nautical mile and print it to the Output Window.

• double

• More on data types in Lecture 3!

– Compile and debug. Raise your hand if you need help.
– If you have time, compute the number of statute miles in a

nautical mile and print it.

Attaching Javadoc

• In the Eclipse menu bar, go to
– 'Window'->'Preferences'->'Java'->'Installed JREs'.

• There should be only one installed JRE (j2re1.5.0)
• Highlight it and click 'Edit...'.

–
– Browse for the correct folder ('C:Program

– Click OK.

•
• In Eclipse:

– Place the cursor on any Java method or class,
–
–

method

• Ask a TA for help if you have questions

Compute the number of nautical miles in a statute (5280

Since you need decimal arithmetic, define variables as

You will see the field for 'Javadoc URL'.

Files¥ Java¥j2sdk1.5.0¥docs¥api¥')

Javadoc is now linked to Eclipse.

Select 'Navigate'->'Open External Javadoc' (or Shift+F2)
You now have full documentation on the Java class or

Homework 1

Conveyor 1

Angle θ

Slide

Conveyor 2

1
2

3
Acceleration a

Homework 1, cont.

t1 t2

69.3*0.25 34.7 34.7*0.30 17.3 17.3*0.35 69.3
t1 t2

69.3 34.7 17.3

10 kg*9.8 m/sec2 5 kg*9.8 m/sec2 2.5 kg*9.8 m/sec2

Free body diagrams at θ = 45°

Choose a small angle theta
Find the acceleration a and tensions t1, t2 from three equations
Find velocity v at the end of the slide length s
Increase the angle until velocity exceeds maximum (iteration)

