1.00 Lecture 26

Data Structures:
Introduction
Stacks

Reading for next time: Big Java: 19.1-19.3

Data Structures

« Set of primitives used in algorithms,
simulations, operating systems, applications to:
— Store and manage data required by algorithm
— Provide only the access that is required
— Disallow all other access

* There are a small number of common data
structures
— We cover the basic version of the core structures

— Many variations exist on each structure
* It’'s common to make application-specific modifications

 We’ll both build them and use the Java built-in
versions!

Stacks

ONCT

Top
d Single ended structure
Last-in, first-out (LIFO) list
q .
Applications:
b 1. Simulation: robots, machines
2. Recursion: pending function calls
z 3. Reversal of data
Queues
-— e b w d u -—
Front Rear

Double ended structure
First-in, first-out (FIFO) list

Applications:

1. Simulation: lines

2. Ordered requests: device drivers, routers, ...
3. Searches

Double ended Queues (Dequeues)

Double ended structure

Applications:
1. Simulation: production, operations
Train
B EEERIEEE2ZIEEEIE .
Engin\e\ Engine
Track 1
Track 2
Track 3

A dequeue can model both stacks and queues

Priority Queues or Heaps

Top
* Highest priority element at top

b * “Partial sort”
« All enter at bottom, leave at top

Applications:

1. Simulations: event list

2. Emergency response modeling
3. Searching (next most likely)

1 e Bottom

Heaps Modeled as Binary Tree

Binary Trees

Level Nodes

@ 0 20

e] b 1 2

\ 2 22
ARAN

k

Binary tree has 2(k*1)-1 nodes

A maximum of k steps are required to find (or not find) a node
E.g. 220 nodes, or 1,000,000 nodes, in 20 steps!

Binary trees can be built in many ways: heaps, search trees...

Binary Trees

Applications:

1. Searching and sorting (general purpose)

2. Fast retrieval of data
Find/insert any item quickly (bottom, middle or top)
More general than earlier data structures

Trees

(m)
leJ (n) TP
@/ (0 \(\D\

Each node has variable number of children

Applications:

1. Set operations (unions, intersections)

2. Matrix operations (basis representation, etc.)

3. Graphics and spatial data (quadtrees, R-trees, ...)

Applications

1. Simulation

2. Matrix representation

3. General systems representation

4. Networks: telecom, transport, hydraulic, electrical, ...

Relationships of Data
Structures

@ Many variations

Many variations

Prioity quet

Three possible implementations
1. Arrays
\ 2. Linked lists

@ 3. Built-in Java classes

Exercise

 What data structure would you use to
model:

— People getting on and off the #1 bus at the MIT
stop thru front and back doors

— A truss in a CAD program /\/\/\/\
— A conveyor belt

— The emergency room at a hospital

— The lines at United Airlines at Logan

— The Cambridge street network

— How to go from MIT to all pts in Boston
— Books to be reshelved at the library

Stacks

Stack s
4 = Capacity -1
3
Top ‘¢ —_— Push(‘a’)
T ‘b’ 4 Push(‘b’)
Push(‘c’)
Top— | ‘@’ 0

Pop() — ‘¢’

—Fop— - Pop() b

Stack Interface

import java.util.¥*; // For exception

public interface Stack

{

}

public boolean iseEmpty();
public void push(oObject o);
public object pop() throws

EmptyStackException;
public void clear(;

// Interface Stack is an abstract data type
// we will implement ArrayStack as a concrete
// data type, to the Stack specification

Using a Stack to Reverse an Array

public class Reverse {
public static void main(String args[]) {
int[] array = { 12, 13, 14, 15, 16, 17 };
Stack stack = new ArraysStack(Q);
for (int i = 0; i < array.length; i++) {
Integer y= new Integer(array[i]);
stack.push(y);

}
while (!stack.isempty(Q) {
Integer z= (Integer) stack.popQ;
System.out.printin(z);
}
}
}

// output: 17 16 15 14 13 12

ArrayStack, 1

// bownload ArrayStack; you’11l be writing parts of it
// bownload Stack and Reverse also.

import java.util.¥*;

public class ArraysStack implements Stack {
public static final int DEFAULT_CAPACITY = 8;
private oObject[] stack;
private int top = -1;
private int capacity;

public Arraystack(int cap) {
capacity = cap;
stack = new Object[capacity];
1
public Arraystack({
this(DEFAULT_CAPACITY);

¥

Exercise: ArrayStack, 2

public boolean isEmpty() {
// Complete this method (one T1ine)
1

public void clear() {
// Complete this method (one T1ine)

}

Exercise: ArrayStack,3

public void push(Object o) {

// Complete this code

// If stack is full already, call grow(Q)
1

private void grow() {
capacity *= 2;
oObject[] oldstack = stack;
stack = new Object[capacity];
System.arraycopy(oldstack, 0, stack, 0, top);

Exercise: ArrayStack, 4

public object pop()
throws EmptyStackException

{
// Complete this code
// If stack is empty, throw exception

// When you finish this, save/compile and run Reverse

Queues

A queuelis a data structure to which you add
new items at one end and remove old
items from the other.

Remove Add items
items here here

[1] * [o+1]

Rear Rear Rear Rear
¥ ¥ ¥ ¥
ia5 £b5 ic5
Front Front >
Rear
¥
ic, ‘d,
t
Unused! Front Run out of room!
Queue
Rear
¥
ic5 £d5
Front

Wrap around!

Ring Queue

Front points to
first element.

Rear points to
rear element.

Front points to
first element.

Rear points to
rear element.

Front—

Queuellnterface

import java.util.¥;

public interface Queue

{
public boolean isEmpty(Q;
public void add(object o);
public object remove() throws
NoSuchElementException;
public void clear(Q;
}

Implementing a Ring Queue

pubTlic class RingQueue implements Queue {
private Object[] queue;
private int front;
private int rear;
private int capacity;
private int size = 0;
static public final int DEFAULT_CAPACITY= 8;

RingQueue Data Members

queue: Holds a reference to the ring array

front: If size>0, holds the index to the next

item to be removed from the queue

rear: If size>0, holds the index to the last
item that was added to the queue

capacity: Holds the size of the array referenced
by queue

size: Always >=0. Holds the number of items
on the queue

RingQueue Methods

public RingQueue(int cap) {
capacity = cap;
front = 0;
rear = capacity - 1;
queue= new Object[capacity];

}

public RingQueue() {
this(DEFAULT_CAPACITY);
}

public boolean isEmpty() {
return (size == 0);
}

public void clear() {
size = 0;
front = 0;
rear = capacity - 1;

RingQueue Methods

public void add(object o) {
if (size == capacity)
grow(Q);
rear = (rear + 1) % capacity;
queue[rear] = o;
size++;

}

public object remove() {
if (isEmpty(Q)
throw new NoSuchElementException();
else {
Object ret = queue[front];
front = (front + 1) % capacity;
size--;
return ret;
1
1
// See download code for grow() method

Exercise
 Download:
— QueueSimulation
— RingQueue
— ColorUtil

* Run QueueSimulation
— Experiment with it

— It runs the opposite way around the ring as our
earlier example but is implemented the same
way

* Green points to front, red points to rear of queue

