
1

1.00 Lecture 21
2D API

2D Transformations

Reading for next time: Numerical Recipes p. 32-36
Just read the text; don’t worry about reading the C code

Clock, revisited

• We’ll use the model-view-controller version of the clock and draw
with the 2D API (application programming interface):

•Download ClockController, ClockModel, ClockView

2

Clock View with 2D API
import java.awt.*;

import javax.swing.*;

import java.awt.geom.*;

public class ClockView extends JPanel {

private ClockModel model;

private static final double CD= 200; // Clock diameter

private static final double X= 100; // Dist from upper lh corner

private static final double Y= 50; // Dist from upper lh corner

private static final double XC= X + CD/2; // Clock center x

private static final double YC= Y + CD/2; // Clock center y

private static final double HR= 0.3F*CD; // Size of hour hand

private static final double MI= 0.45F*CD; // Size of minute hand

public ClockView(ClockModel cm) {

model = cm;

}

// Continued

Clock View with 2D API, p.2
public void paintComponent(Graphics g) {

super.paintComponent(g);

Graphics2D g2 = (Graphics2D) g; // Cast g to g2 context

double minutes= model.getMinutes();

double hourAngle = 2*Math.PI * (minutes - 3 * 60) / (12 * 60);

double minuteAngle = 2*Math.PI * (minutes - 15) / 60;

Ellipse2D.Double e = new Ellipse2D.Double(X, Y, CD, CD);

Line2D hr= new Line2D.Double(XC, YC, XC+(HR*Math.cos(hourAngle)),

YC+ (HR * Math.sin(hourAngle)));

Line2D mi= new Line2D.Double(XC, YC, XC+

(MI* Math.cos(minuteAngle)), YC+ (MI * Math.sin(minuteAngle)));

g2.setPaint(Color.BLUE);

BasicStroke bs= new BasicStroke(5.0F,

BasicStroke.CAP_BUTT, BasicStroke.JOIN_BEVEL);

g2.setStroke(bs);

g2.draw(e);

g2.draw(hr);

g2.draw(mi);

}

}

3

Exercise
• Add the two lines and arc in paintComponent() to create the

picture shown in the first slide
– Line2D.Double(double x0, double y0, double x1,

double y1)
• Draws a line from (x0, y0) to (x1, y1)
• Make your line length = clock diameter / 4

– Arc2D.Double(double x, double y, double w, double h,
double start, double extent, int type)
• Draws an arc with upper left hand corner (x,y), width w and height h.

These first 4 arguments are the same as the ellipse or circle
arguments

• Start is the start angle, in degrees
• Extent is the angle of the arc, in degrees
• Type is a style; use Arc2D.OPEN

• Optional: Draw the hour and minute hands in different colors
and different line widths.

Affine Transformations

• The 2D API provides strong support for affine
transformations.
– Affine means linear (of the form y= ax +b)

• An affine transformation maps 2D coordinates so that the
straightness and parallelism of lines are preserved.

• All affine 2D transformations can be represented by a 3x3
floating point matrix.

• There are a number of “primitive” affine transformations
that can be combined: scaling, rotation, and translation.

4

Transformations in the 2D API
• Transformations are represented by instances of

the AffineTransform class in the
java.awt.geom package.

• You can create a new AffineTransform object with
its no argument constructor.

- AffineTransform at = new AffineTransform();

• You can invoke the following methods (and
others) on an AffineTransform object:
– at.scale(double sx, double sy)

– at.translate(double tx, double ty)

– at.rotate(double theta)

– at.rotate(double theta, double x, double y)

• These methods build a stack of basic transforms:
last in, first applied

Translation

1 0
0 1
0 0 1 1 1

x x

y y

t x x t
t y y t

+     
     = +     
          

ty

tx

5

Translation Example
To display a RectanglePanel in a JFrame:

import java.awt.*;

import javax.swing.*;

public class RectangleTest {

public static void main(String args[]) {

JFrame frame = new JFrame(“Rectangle transform");

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.setSize(500,500);

Container contentPane= frame.getContentPane();

RectanglePanel panel = new RectanglePanel();

contentPane.add(panel);

frame.setVisible(true);

}

}

Translation Example
import javax.swing.*;

import java.awt.*;

import java.awt.geom.*; // For 2D classes

public class RectanglePanel extends JPanel {

public void paintComponent(Graphics g) {

super.paintComponent(g);

Graphics2D g2= (Graphics2D) g;

Rectangle2D rect= new Rectangle2D.Double(0,0,50,100);

g2.setPaint(Color.BLUE);

AffineTransform baseXf = new AffineTransform();

// Shift to the right 50 pixels, down 50 pixels

baseXf.translate(50,50);

g2.transform(baseXf);

g2.draw(rect);

}

} // Download and run RectangleTest, RectanglePanel

6

Scaling

0 0
0 0
0 0 1 1 1

x x

y y

s x s x
s y s y

∗     
     = ∗     
          

Scaling Exercise
• Modify RectangleTest, RectanglePanel:
• First, write code to scale rect at the origin using

RectanglePanel as a basis.
– Follow the same steps you saw in the translation exercise.
– Instead of translate, invoke the scale method.
– scale takes two doubles as arguments: the first for scaling x,

the second for y.
• Next, modify rect so that it is not at the origin. How does

scale act on shapes that aren’t at the origin?
– Modify the first two arguments, which are the (x,y) of the upper

left-hand corner of the rectangle

7

Scaling Notes
• Basic scaling operations take place with respect to the

origin. If the shape is at the origin, it grows. If it is anywhere
else, it grows and moves.

• sx, scaling along the x dimension, does not have to equal
sy, scaling along the y.

• For instance, to flip a figure vertically about the x-axis,
scale by sx=1, sy=-1.

Rotation

() ()

() ()

() ()

() ()

cos sin 0 cos sin

sin cos 0 sin cos

0 0 1 1 1

x x y

y x y

α α α α

α α α α

− −

= +

     
     
     
     

α

8

Rotation Exercise
• Modify RectangleTest, RectanglePanel again:
• Write code to rotate rect using RectanglePanel as a

basis.
• Follow the same steps as you did in the scaling exercise.

– Invoke baseXf.rotate() with a single argument: the angle, in
radians, to rotate the rectangle.

– This method will appear to both rotate and move the rectangle
with respect to the origin.

– You might find Math.PI or Math.toRadians(double
degrees) useful.

• To avoid rotating rect completely out of view, rotate by
only a small amount (10 or 20 degrees).

• How does rotating rect change when rect is at the origin?
When it isn’t?

Composing Transformations

• Suppose we want to scale point (x, y) by 2 and then rotate
by 90 degrees.

0 1 0 2 0 0
1 0 0 0 2 0
0 0 1 0 0 1 1

x
y

 −     
      
      
            

scalerotate

9

Composing Transformations, 2

Because matrix multiplication is associative, we can rewrite
this as

0 1 0 2 0 0
1 0 0 0 2 0
0 0 1 0 0 1 1

x
y

 −     
      
      
            

0 2 0
2 0 0
0 0 1 1

x
y

−   
   =    
      

Composing Transformations, 3
• Because matrix multiplication does not regularly commute, the

order of transformations matters. This squares with our geometric
intuition.

• If we invert the matrix, we reverse the transformation.

1. translate
2. scale

2. translate
1. scale

10

Transformations and the
Origin

• When we transform a shape, we transform each of the
defining points of the shape, and then redraw it.

• If we scale or rotate a shape that is not anchored at the
origin, it will translate as well.

• If we just want to scale or rotate, then we should translate
back to the origin, scale or rotate, and then translate back.

Transformations and the
Origin, 2

1. translate to origin

2. rotate

3. translate back

11

Transformations in the 2D API

• Transformations are represented by instances of the
AffineTransform class in the java.awt.geom package.

• Build a compound transform by
1. Creating a new instance of AffineTransform
2. Calling methods to build a stack of basic transforms: last in,

first applied:
– translate(double tx, double ty)

– scale(double sx, double sy)

– rotate(double theta)

– rotate(double theta, double x, double y)

rotates about (x,y)

Transformation Example
baseXf = new AffineTransform();

baseXf.scale(scale, -scale);

baseXf.translate(-x, -y);

If we now apply baseXF it will translate first, then scale.
Remember in Java that transforms are built up like a stack, last in,

first applied.

baseXf

scale

translate

First to be applied

(TransformTest and TransformPanel show an example)

12

Converting Swing GUIs to
Applets

• Create an HTML page with appropriate code to load the applet
(covered in lecture 37)

• Declare an applet class name, extends JApplet
• Eliminate your main() method:
• Remove calls to

– setSize(); done in HTML file
– setDefaultCloseOperation(); applet ends when browser closes
– setTitle(); no titles allowed
– setVisible(); done by browser

• Don’t construct a JFrame (eliminate its constructor)
– Applets use the browser window instead

• Move any remaining code from main() or the JFrame constructor
to the init() method of the applet
– Often no statements will remain in the old main()
– Often your JFrame constructor can move ‘as is’

Clock Applet
import javax.swing.*;

import java.awt.*;

public class AppletTest extends JApplet{

public void init() {

Container contentPane= getContentPane();

ClockPanel clock= new ClockPanel();

contentPane.add(clock);

}

}

// ClockPanel class from events lecture works “as is”.

// No need for ClockFrame class:

// Eliminated statements in list from main(), constructor

// Moved remaining statements into init()

13

Clock Applet Exercise

Download ClockPanel
Write AppletTest (compare to old main, constructor)
Run -> Run As Applet in Eclipse

Test Your Swing Knowledge

• Can a class be its own event handler?
– Yes
– No

• What interface must a class implement to listen to events?
– ___________________

• If so, what method(s) does this interface have?
– ___________________

• How would you draw a JButton with rounded edges?
– ___________________

14

Test Your Swing Knowledge, p. 2

• Why don’t we draw JComponents directly on a JFrame?
– _______________________________

• On what object do we draw JComponents?
– _____________________

• Should you put System.exit(0) at the end of main() methods
that create Swing objects?
– Yes No Why? _______________

• What method does repaint() call?
– _____________________

• Why not call that method directly?
– _____________________

Test Your Swing Knowledge, p. 3

• An anonymous inner class constructor can have arguments
– True False

• You can refer to anonymous inner class objects by using
the ‘inner’ keyword
– True False

• An anonymous inner class can only have the methods that
implement its Listener interface
– True False

• An anonymous inner class has the name ‘this’
– True False

• An anonymous inner class has access to its enclosing
class’ data and methods
– True False

