1.00 Lecture 21

2D API
2D Transformations

Reading for next time: Numerical Recipes p. 32-36
Just read the text; don’t worry about reading the C code

Clock, revisited

* We’ll use the model-view-controller version of the clock and draw
with the 2D API (application programming interface):

£ 20 API Clock =l -10O] x|

| cran || ik || Reset | 1200

*Download ClockController, ClockModel, ClockView

Clock View with 2D API

import java.awt.*;
import javax.swing.*;
import java.awt.geom.*;

public class Clockview extends JPanel {
private ClockModel model;
private static final double CD= 200;
private static final double X= 100;
private static final double Y= 50;
private static final double XC= X + CD/2;
private static final double YC= Y + CD/2;
private static final double HR= 0.3F*CD;
private static final double MI= 0.45F*CD;

public Clockview(ClockModel cm) {
model = cm;

3

Clock View with 2D API, p.2

public void paintComponent(Graphics g) {
super.paintComponent(g);
Graphics2D g2 = (Graphics2D) g;
double minutes= model.getMinutes(Q);
double hourAngle = 2*Math.PI * (minutes - 3 * 60) / (12 * 60);
double minuteAngle = 2*Math.PI * (minutes - 15) / 60;

Ellipse2D.Double e = new Ellipse2D.Double(X, Y, CD, CD);

Line2D hr= new Line2D.Double(XC, YC, XC+(HR*Math.cos(hourAngle)),
YC+ (HR * Math.sinChourAngle)));

Line2D mi= new Line2D.Double(XC, YC, XC+
(MI* Math.cos(minuteAngle)), YC+ (MI * Math.sin(minuteAngle)));

g2.setPaint(Color.BLUE);

BasicStroke bs= new BasicStroke(5.0F,
BasicsStroke.CAP_BUTT, BasicStroke.JOIN_BEVEL);

g2.setstroke(bs);

g2.draw(e);

g2.draw(Chr);

g2.draw(mi);

Exercise

« Add the two lines and arc in paintComponent () to create the
picture shown in the first slide
- Line2D.Double(double x0, double y0, double x1,
double y1)
* Draws a line from (x0, y0) to (x1, y1)
» Make your line length = clock diameter / 4
- Arc2D.Double(double x, double y, double w, double h,
double start, double extent, int type)

* Draws an arc with upper left hand corner (x,y), width w and height h.
These first 4 arguments are the same as the ellipse or circle
arguments

» Start is the start angle, in degrees
« Extent is the angle of the arc, in degrees
« Type is a style; use Arc2D.OPEN
» Optional: Draw the hour and minute hands in different colors
and different line widths.

Affine Transformations

The 2D API provides strong support for affine
transformations.

— Affine means linear (of the form y= ax +b)
+ An affine transformation maps 2D coordinates so that the
straightness and parallelism of lines are preserved.
All affine 2D transformations can be represented by a 3x3
floating point matrix.
* There are a number of “primitive” affine transformations
that can be combined: scaling, rotation, and translation.

Transformations in the 2D API

Transformations are represented by instances of
the AffineTransform class in the
java.awt.geom package.

You can create a new AffineTransform object with
its no argument constructor.
- AffineTransform at = new AffineTransform(Q;

You can invoke the following methods (and
others) on an AffineTransform object:

- at.scale(double sx, double sy)

- at.translate(double tx, double ty)

- at.rotate(double theta)

- at.rotate(double theta, double x, double y)
These methods build a stack of basic transforms:
last in, first applied

Translation

Translation Example
To display a RectanglePanel in a JFrame:

import java.awt.¥;
import javax.swing.¥;

public class RectangleTest {
public static void main(string args[]) {
JFrame frame = new JFrame(‘‘Rectangle transform");

frame.setbefaultCloseoOperation(JFrame.EXIT_ON_CLOSE);
frame.setSize(500,500);
Container contentPane= frame.getContentPane();
RectanglePanel panel = new RectanglePanel();
contentPane.add(panel);
frame.setvisible(true);

Translation Example

import javax.swing.¥;
import java.awt.*;
import java.awt.geom.*; // For 2D classes

public class RectanglePanel extends JPanel {
public void paintComponent(Graphics g) {
super.paintComponent(g);
Graphics2D g2= (Graphics2D) g;
Rectangle2D rect= new Rectangle2D.Double(0,0,50,100);
g2.setPaint(Color.BLUE);

AffineTransform basexf = new AffineTransform();
// shift to the right 50 pixels, down 50 pixels
basexf.translate(50,50);

g2.transform(basexf);

g2.draw(rect);

} // bownload and run RectangleTest, RectanglePanel

Scaling

Scaling Exercise

Modify RectangleTest, RectanglePanel:
First, write code to scale rect at the origin using
RectanglePanel as a basis.

— Follow the same steps you saw in the translation exercise.

— Instead of translate, invoke the scale method.

- scale takes two doubles as arguments: the first for scaling x,

the second fory.

Next, modify rect so that it is not at the origin. How does
scale act on shapes that aren’t at the origin?

— Modify the first two arguments, which are the (x,y) of the upper
left-hand corner of the rectangle

Scaling Notes

+ Basic scaling operations take place with respect to the
origin. If the shape is at the origin, it grows. If it is anywhere
else, it grows and moves.

» s, scaling along the x dimension, does not have to equal
sy, scaling along the y.

» For instance, to flip a figure vertically about the x-axis,
scale by s,=1, s,=-1.

Rotation

cos(a) —sin(a) X xcos(a)—ysin(a)
sin(a) cos(a) y xsin(a)+ycos(a)

0 0 1

Rotation Exercise

Modify RectangleTest, RectanglePanel again:

Write code to rotate rect using RectanglePanel as a

basis.

Follow the same steps as you did in the scaling exercise.
Invoke basexf.rotate() with a single argument: the angle, in
radians, to rotate the rectangle.

This method will appear to both rotate and move the rectangle
with respect to the origin.

You might find Math.PI or Math.toRadians(double
degrees) useful.

To avoid rotating rect completely out of view, rotate by

only a small amount (10 or 20 degrees).

How does rotating rect change when rect is at the origin?

When it isn’t?

Composing Transformations

Suppose we want to scale point (x, y) by 2 and then rotate
by 90 degrees.

rotate scale

Composing Transformations, 2

Because matrix multiplication is associative, we can rewrite
this as

Composing Transformations, 3

* Because matrix multiplication does not regularly commute, the
order of transformations matters. This squares with our geometric
intuition. ro-ms

1

[[

r=a
[

« If we invert the matrix, we reverse the transformation.

Transformations and the
Origin
When we transform a shape, we transform each of the

defining points of the shape, and then redraw it.

If we scale or rotate a shape that is not anchored at the
origin, it will translate as well.

If we just want to scale or rotate, then we should translate
back to the origin, scale or rotate, and then translate back.

Transformations and the
Origin, 2

1. translate to origin
2. rotate

3. translate back

Transformations in the 2D API

. Transformations are represented by instances of the
AffineTransform class in the java.awt.geom package.
. Build a compound transform by
1. Creating a new instance of AffineTransform

2. Calling methods to build a stack of basic transforms: last in,
first applied:

- translate(double tx, double ty)

- scale(double sx, double sy)

- rotate(double theta)

- rotate(double theta, double x, double y)
rotates about (x,y)

Transformation Example

basexf = new AffineTransform(Q);
basexf.scale(scale, -scale);
basexf.translate(-x, -y);

If we now apply baseXF it will translate first, then scale.
Remember in Java that transforms are built up like a stack, last in,

first applied.
First to be applied
translate

scale
baseXxf

Converting Swing GUIs to
Applets

Create an HTML page with appropriate code to load the applet
(covered in lecture 37)
Declare an applet class name, extends JApplet
Eliminate your main() method:
Remove calls to
— setSize(); done in HTML file
— setDefaultCloseOperation(); applet ends when browser closes
— setTitle(); no titles allowed
— setVisible(); done by browser
Don’t construct a JFrame (eliminate its constructor)
— Applets use the browser window instead
Move any remaining code from main() or the JFrame constructor
to the init() method of the applet
— Often no statements will remain in the old main()
— Often your JFrame constructor can move ‘as is’

Clock Applet

import javax.swing.*;
import java.awt.¥;

public class AppletTest extends JApplet{

public void initQ) {
Container contentPane= getContentPane();
Clockpanel clock= new ClockPanel();
contentPane.add(clock);

Clock Applet Exercise

=lofx]

Applet

Applet started.

Download ClockPanel
Write AppletTest (compare to old main, constructor)
Run -> Run As Applet in Eclipse

Test Your Swing Knowledge

Can a class be its own event handler?
— Yes
- No
What interface must a class implement to listen to events?

If so, what method(s) does this interface have?

How would you draw a JButton with rounded edges?

Test Your Swing Knowledge, p. 2

* Why don’t we draw JComponents directly on a JFrame?

* On what object do we draw JComponents?

» Should you put System.exit(0) at the end of main() methods
that create Swing objects?
— Yes No Why?

* What method does repaint() call?

* Why not call that method directly?

Test Your Swing Knowledge, p. 3

* An anonymous inner class constructor can have arguments
— True False
* You can refer to anonymous inner class objects by using
the ‘inner’ keyword
— True False

* An anonymous inner class can only have the methods that
implement its Listener interface

— True False
* An anonymous inner class has the name ‘this’
— True False

+ An anonymous inner class has access to its enclosing
class’ data and methods
— True False

