1.00 Lecture 9

Methods and Objects
Access

Reading for next time: Big Java: sections 7.6, 7.7

Storing weather for a city

+ We'll first show an example of storing
temperature and precipitation data for cities.
— Our classes have some methods with arguments
— We’ll examine the methods and arguments: they’ll do
what you expect
+ We’ll then extend our weather example to have
each city store a weather information object that
collects the weather data in one place
— These classes also have methods with arguments

— We’ll examine these methods too. They also do what
you expect (but your expectations will have to be a bit
more sophisticated!)

SimpleCity

public class SimpleCity {
private String name;
private double avgTemperature;
private double precipAmt;

public SimpleCity(String n, double a, double p) {
name= n;
avgTemperature= a;
precipAmt= p;

}

public string getName() {
return name;

}

public double getAvgTemperature() {
return avgTemperature;

1

public void setAvgTemperature(double t) {
avgTemperature= t;

1

public double getPrecipAamt() {
return precipAmt;

1 3

SimpleWeatherTest

public class SimpleweatherTest {
public static void main(string[] args) {

SimpleCity boston= new SimpleCity("Boston", 40.0, 0.0);
SimpleCity cambridge= new SimpleCity("Cambridge", 40.0, 0.0);

// Now revise the Boston weather, which was corrected
boston.setAvgTemperature(41.0);

System.out.printin("Boston: + boston.getAvgTemperature());

System.out.printin("Cambridge: "+
cambridge.getAvgTemperature());

}

// what is the output of this program?

Passing Arguments

SimpleWeather

_ Communi-
m.aln(...){... cation only
City boston= ... via arg list,

return value

boston.setAvgTemp(41.0);

|

Argument 1

SimpleCity b

public void setAvgTemp(double t)

{ /I Method makes its own copy Settlng_ the
1l of tt Cambridge
otargumen temperature

avgTemperature=t;

}

would be the
same

Method/Object Exercise

+ We now change SimpleCity and
SimpleWeatherTest slightly
— We rename them City and WeatherTest
— We also introduce a simple Weather class
— We’ll look at them briefly on the next slides

Weather class

public class weather {
private double avgTemperature;
private double precipAmt;
public weather(double a, double p) {
avgTemperature= a;
precipAmt= p;
1
public void setAvgTemp(double t) {
avgTemperature= t;
}
public void setPrecipAmt(double pr) {
precipAmt= pr;
}
public string tostring() {
return ("Temperature: "+avgTemperature+
" ; Precipitation: "+precipAmt);

City class

public class City {
private String name;
private weather cityweather;

public cCity(string n, weather c) {
name= n;
cityweather= c;

}

public string getName() {
return name;

}

public weather getweather() {
return cityweather;

}

WeatherTest

public class weatherTest {
public static void main(String[] args) {
weather today= new Weather(40.0, 0.0);
City boston= new City("Boston", today);
City cambridge= new City("Cambridge", today);

// Now revise the Boston weather, which was corrected
weather bostonToday= boston.getweather();
bostonToday.setAvgTemp(41.0);
System.out.printin("Boston: " + boston.getweather());
System.out.printin("Cambridge: "+ cambridge.getweather());

Exercise- Weather classes

+ Download Weather, City, WeatherTest
» Import them into Eclipse

» Before running them, think about what the
output will be

+ Compile and run them
* Is the output what you expected?

Objects As Arguments

weather today= new weather(40.0, 0.0); today=
City boston= new City("Boston", today);
City cambridge= new City("Cambridge", today);

// Now revise the Boston weather, which was Corrected
weather bostonToday= boston.getweather();
bostonToday.setAvgTemp(41.0);

40.0 0.0

Weather

Objects As Arguments

weather today= new weather(40.0, 0.0); today=
City boston= new City("Boston", today); boston<
City cambridge= new City("Cambridge", today);

// Now revise the Boston weather, whi
weather bostonToday= boston.get
bostonToday.setAvgTemp (41

was corrected

“Boston”[_1./| 40.0 0.0

City Weather

Objects As Arguments

weather today= new weather(40.0, 0.0); today=
City boston= new City("Boston", today);

bostonToday.setAvgTemp (41

“Boston”[_ 1| 40.0 0.0 Cambriqrg,e,’,’,l:]

City

Weather City

Objects As Arguments

weather today= new weather(40.0, 0.0); today=
City boston= new City("Boston", today); boston<
City cambridge= new City("Cambridge", today);

bostonToday.setAvgTemp (41

“Boston’[]./] 40.0 0.0 Cambridge”[]

City

|

Weather City

Objects As Arguments

weather today= new weather(40.0, 0.0); today=
City boston= new City("Boston", today);

bostonToday.setAvgTemp (41

“Boston”|_ ﬁgp;o’o.o Cambrrirgrgre,’,’,,

City Weather City

When objects are passed as arguments to methods, the method

makes a copy of the reference to the object, not a copy of the object!
Why?

Method Calls With Objects

+ When passing object references as arguments to
a method:
— The method makes its own copy of the references

— It makes changes to the objects through its local copies
of the references

— No changes can be made to the references (arguments)

* The method can’t change the reference to another object,
for example

— Results are returned through the return value, which
may be an object
+ When passing built-in data types as arguments to

a method:

— The method makes its own copy of the built-in variables
— It makes changes to its local copies only

— No changes are made to the arguments

— Results are returned through the return value

If you don’t like this...

* When you pass an object reference as an
argument to a method, the method may make its
own local copy of the object:

public class safercCity {
private String name;
private weather cityweather;

public safercity(string n, weather c) {
name= n;
double temp= c.getAvgTemperature();
double prec= c.getPrecipAmt();
cityweather= new weather(temp, prec);

public Sstring getName() {
return name;
1

public weather getweather() {
return cityweather;
}

} // weather must have methods getAvgTemperature(), getPrecipAmt()

Access: Variables, Methods

» Instance and static variables and methods have 4
access modifiers:
— Private: Access only to own class’ methods
» Data fields should be private, almost always
» Other objects of same class can access private variables
— Public: Access to all methods, all classes
* Methods intended for other class’ use are public
* Methods for internal use only are private
— Package: Access to methods of classes in same package (a
package is a group of classes)
» This is the default, alas. Always specify scope explicitly
* No ‘package’ keyword; it’s the default with no keyword
— Protected: Used with inheritance (covered later)

» Like a private variable, except it’s visible to derived or
subclasses (and, in Java, to other classes in package)

Packages in Eclipse

= Levre aun
#1122 Lecturedsos
=22 Lectureds0s
= (default package)
- [1) City java
- [J] SaferCity.java
- [J] SimpleCity java
w1 SimpletWeatherTest.java
i [J] Weather java
- [J] WeatherTest.java
= weather
- [J] Observation.java
+-m\ RE System Library [jrel.5.0] Mol
Javadoc

<termin
e

In Eclipse:
File -> New -> Package. Type ‘weather’

Use lower case names by convention
Create a new class Observation in weather
(File -> New -> Class ...)

Class Observation

package weather; // Eclipse wrote this for you

// Cut and paste this from the download, or import it
public class Observation {
private double humidity;
private double cloudCover;
public observation(double h, double c) {
humidity= h;
cloudCover= c;

}
public double getHumidity() {
return humidity;

}
public double getCloudCover() {
return cloudCover;

public string tostring() {
return ("Humidity: "+ humidity+
" ; Cloud cover: "+cloudCover);

10

Add Observation to City

* In your default package in Lecture 11:

— Modify your City class to also have an
Observation object:
« Add import weather.*; on 1stline of City.java
+ Add a private Observation obj
» Modify your constructor
« Add a getObservation method

+ We’ll show the solution on the next slide,
and then go on to modify WeatherTest to
use your new City and Observation

Modify WeatherTest

+ Change WeatherTest, still in the default
package, to:
— Create a new Observation
— Place it in Boston and Cambridge
— Output it (System.out.printin) for Boston
— Remember to import weather.*; on line 1

11

Package access

« |f we added another class AdvancedObservation
to package weather
+ And we made humidity and cloudCover package
access variables by removing the private
keyword (in an Observation2 class)
— We also remove the getXXX methods as unneeded
 Then AdvancedObservation can use Observation
data members, such as humidity and cloudCover
directly. It can simply say, for an Observation2
object obs:
— obs.humidity, or obs.cloudCover
as if they were in the AdvancedObservation class

Modified Class Observation

package weather;
public class Observation2 {
double humidity; // No keyword means package access
double cloudCover; // No keyword means package access
public observation2(double h, double c) {
humidity= h;
cloudCover= c;

12

Class AdvancedObservation

package weather;
public class Advancedobservation {
double dewpoint; // Package access
Observation2 obs; // Package access
public Advancedobservation(double d, Observation2 o) {
dewpoint= d;
obs= o;
}
public string tostring({
return ("Humidity: "+obs.humidity+" ; Cloud cover: "
obs.cloudCover+ " ; Dewpoint: "+ dewpoint);
// We can use obs.XXX directly
// Observation2 could use dewpoint directly also

+

13

