1.00 Lecture 8

Classes, continued

Reading for next time: Big Java: sections 7.9

Using An Existing Class, cont.

From last time:

BusRoute is a Java class used by the BusTransfer
class

BusTransfer uses BusRoute objects:

—[First construct the objects and specify their initial state

» Constructors are special methods to construct and initialize
objects

* They may take arguments (parameters)
— Then apply methods to the objects

* This is the same as “sending messages” to them to invoke their
behaviors

Constructor for BusRoute Object

+ To construct a new BusRoute object, two things are
required:
— Create the object (using its constructor)

new BusRoute(l, 300, 80.0); // Use original example
// ‘new’ allocates memory and calls constructor

— Give the object a name or identity:
BusRoute busl;
// oObject name (busl) is a reference to the object
// BusRoute is the data type of busl

— Combine these two things into a single step:
BusRoute busl= new BusRoute(l, 300, 80.0);
—[We now have a BusRoute object containing the values:
* Route number 1
* Number of passengers 300
* Percent transferring 80.0
— We can now apply methods to it.

Using Methods

* Methods are invoked using the dot (.) operator
— Method always ends with parentheses
BusRoute busl= new BusRoute(l, 300, 80.0);
BusRoute bus2= new BusRoute(47, 400, 30.0);

int rl= busl.getRteNumber(Q); // Dot operator
int p2= bus2.getPassengers(); // Dot operator
busl.setPassengers(p2+100); // Dot operator

—[Methods are usually public and can be invoked anywhere

» Data fields are also invoked with the dot (.) operator
— No parentheses after field name
int j= busl.rteNumber; // Syntax ok
// but won’t compile
—[Private data fields can’t be accessed outside their class

* None of the data fields in our bus example can be accessed
this way because they’re all private

Objects and Names

new BusRoute(l, 300, 80.0);

1 300 80.0

BusRoute

Objects and Names

BusRoute bl= new BusRoute(l, 300, 80.0);

1 300 80.0

b1= E BusRoute

Objects and Names

BusRoute bl= new BusRoute(l, 300, 80.0);
Subwayl s= new Subwayl(“Red”);

1 300 80.0 Red
b1=E BusRoute S= S | Subway1
Objects and Names
BusRoute bl= new BusRoute(l, 300, 80.0);
Subwayl s= new Subwayl(“Red”);
BusRoute b2= new BusRoute(47, 400, 30.0);
1 300 80.0 Red
b1=E BusRoute s= E Subway1

47 400 30.0

b2= E BusRoute

Objects and Names

BusRoute bl= new BusRoute(l, 300, 80.0);
Subwayl s= new Subwayl(“Red”);

BusRoute b2= new BusRoute(47, 400, 30.0);
BusRoute b3;

1 300 80.0 Red

b1=E BusRoute S=E Subway1

47 400 30.0

b2= E BusRoute b3= S

Objects and Names

BusRoute bl= new BusRoute(l, 300, 80.0);
Subwayl s= new Subwayl(“Red”);

BusRoute b2= new BusRoute(47, 400, 30.0);
BusRoute b3;

b3= b2;

1 300 80.0 Red

b1=E BusRoute 5=E Subway1

47 400 30.0

b2=| | g Route b3=| |

b1=

b2

Objects and Names

BusRoute bl= new BusRoute(l, 300, 80.0);

Subwayl s= new Subwayl(“Red”);

BusRoute b2= new BusRoute(47, 400, 30.0);

BusRoute b3;

b3= b2;

b3.setPassengers(900); // Easy to do accidentally

1 300 80.0 Red

E BusRoute S=E Subway1

47 900 30.0

E BusRoute b3=

Subway class

public class Subway {
private String name;

private BusRoute2 busl; // Connecting bus route
private BusRoute2 bus2; // Connecting bus route
public Subway(String n, BusRoute2 bl, BusRoute2 b2) {
name= n;
busl= bl;
bus2= b2;
}

public double getTransferPassengers(){
return busl.getConnectionPassengers() +
bus2.getConnectionPassengers();

33

public class SubwayTransfer {
public static void main(string[] args) {
BusRoute2 busl = new BusRoute2(1l, 300, 80.0, 5);
BusRoute2 bus2 = new BusRoute2(47, 400, 30.0, 10);
Subway s= new Subway("Red", busl, bus2);
double transfer= s.getTransferPassengers();
system.out.printin("Subway psgrs: "+transfer);

13

Draw the picture

// Assume bl and b2 exist
Subway s= new Subway(“Red”, bl, b2);

1 300 80.0

b1= E BusRoute

47 900 30.0

b2= E BusRoute

Summary-classes

» Classes are a pattern for creating objects

* Objects have:
— A name (reference, which is actually a memory location)
A data type (their class)
*[JWe generalize this later; objects can have many types

A block of memory to hold their member data, allocated by
the ‘new’ keyword

Member data, usually private, whose values are set by their
constructor, called when ‘new’ is used

* Member data can be built-in data types or objects of any kind
Methods, usually public, to get and set all values
Methods to do some computation

Summary- constructors

* A constructor is a special method
— Same name as the class

— A class can have many of them, though each must have
different arguments

— Has no return value (never ‘responds’)
— Generally sets all data members to their initial values
— Implements the ‘existence’ behavior

— Is called once when the object is first created with ‘new’ in a
program that wants to use it

+ Example
public class Flagpole {
private double height;
public Flagpole() {height= 100.0;}
public Flagpole(double h) { height= h;}

Building Classes

* A window company has 3 plants
— A makes wood frames
* Produces 200 frames/day, unit cost $25/frame
— B makes glass
» Produces 200 panes/day, unit cost $5/pane
— C, adjacent to B, assembles windows
*[JAssembles 200 windows/day, unit assembly cost $12
+ We'll write the classes for this problem
— There are many alternatives; we guide you to use a
straightforward one

— This will not be a general solution. It will work only for
one product, taking one frame and one pane of glass. It
may seem awkward in places, but it’s a typical starting
point.

— Use the ‘spiral model’ to make your solution more
general in a second or third pass.

Plant Class

Write the class P1ant for plants producing
frames or glass. Ignore window assembly.

Data fields:

Constructor:

Plant Class Methods

Don’t write any “set” methods. The plant
data is set by the constructor and we
won’t change it after that in this problem.

“Get” methods, for each private field:

Computational method

Assembly Plant Class

* We assemble one product from two parts. Write
class Assembly. Eclipse: New->Class Assembly
» Data fields:

e Constructor

Assembly Class Methods

* Don’t write any “set” or “get” methods.
«[JComputational methods (cost, production)

Main()

» Write a main() to create the three plants and to
output the cost per product and the production
rate.

