
1

1.00 Lecture 8

Classes, continued

Reading for next time: Big Java: sections 7.9

Using An Existing Class, cont.

•	 From last time:
•	 BusRoute is a Java class used by the BusTransfer

class
•	 BusTransfer uses BusRoute objects:

– First construct the objects and specify their initial state
•	 Constructors are special methods to construct and initialize

objects
•	 They may take arguments (parameters)

–	 Then apply methods to the objects
•	 This is the same as “sending messages” to them to invoke their

behaviors

2

Constructor for BusRoute Object

•	 To construct a new BusRoute object, two things are
required:
–	 Create the object (using its constructor)

new BusRoute(1, 300, 80.0); // Use original example

// ‘new’ allocates memory and calls constructor

–	 Give the object a name or identity:
BusRoute bus1;

// Object name (bus1) is a reference to the object

// BusRoute is the data type of bus1

–	 Combine these two things into a single step:
BusRoute bus1= new BusRoute(1, 300, 80.0);

– We now have a BusRoute object containing the values:
•	 Route number 1
•	 Number of passengers 300
•	 Percent transferring 80.0

–	 We can now apply methods to it.

Using Methods
•	 Methods are invoked using the dot (.) operator

–	 Method always ends with parentheses
BusRoute bus1= new BusRoute(1, 300, 80.0);

BusRoute bus2= new BusRoute(47, 400, 30.0);

int r1= bus1.getRteNumber(); // Dot operator

int p2= bus2.getPassengers(); // Dot operator

bus1.setPassengers(p2+100); // Dot operator

– Methods are usually public and can be invoked anywhere

•	 Data fields are also invoked with the dot (.) operator
–	 No parentheses after field name

int j= bus1.rteNumber;	 // Syntax ok

// but won’t compile

– Private data fields can’t be accessed outside their class
•	 None of the data fields in our bus example can be accessed

this way because they’re all private

3

Objects and Names
new BusRoute(1, 300, 80.0);

1 300 80.0

BusRoute

Objects and Names

b1= BusRoute

1

BusRoute b1= new BusRoute(1, 300, 80.0);

300 80.0

4

b1= BusRoute

1

Objects and Names

s=

Red300 80.0

BusRoute b1= new BusRoute(1, 300, 80.0);

Subway1 s= new Subway1(“Red”);

Subway1

b1= BusRoute

1

Objects and Names

s=

b2= BusRoute

47

Red300 80.0

BusRoute b1= new BusRoute(1, 300, 80.0);

Subway1 s= new Subway1(“Red”);

BusRoute b2= new BusRoute(47, 400, 30.0);

Subway1

400 30.0

5

b1= BusRoute

1

Objects and Names

s=

b2= BusRoute

47

Red

b3=

300 80.0

BusRoute b1= new BusRoute(1, 300, 80.0);

Subway1 s= new Subway1(“Red”);

BusRoute b2= new BusRoute(47, 400, 30.0);

BusRoute b3;

Subway1

400 30.0

b1= BusRoute

1

Objects and Names

s=

b2= BusRoute

47

Red

b3=

300 80.0

BusRoute b1= new BusRoute(1, 300, 80.0);

Subway1 s= new Subway1(“Red”);

BusRoute b2= new BusRoute(47, 400, 30.0);

BusRoute b3;

b3= b2;

Subway1

400 30.0

6

b1= BusRoute

1

Objects and Names

s=

b2= BusRoute

47

Red

b3=

300 80.0

BusRoute b1= new BusRoute(1, 300, 80.0);

Subway1 s= new Subway1(“Red”);

BusRoute b2= new BusRoute(47, 400, 30.0);

BusRoute b3;

b3= b2;

b3.setPassengers(900); // Easy to do accidentally

Subway1

900 30.0

Subway class
public class Subway {

private String name;

private BusRoute2 bus1; // Connecting bus route

private BusRoute2 bus2; // Connecting bus route

public Subway(String n, BusRoute2 b1, BusRoute2 b2) {

name= n;

bus1= b1;

bus2= b2;

}

public double getTransferPassengers(){

return bus1.getConnectionPassengers() +

bus2.getConnectionPassengers();

}}

public class SubwayTransfer {

public static void main(String[] args) {

BusRoute2 bus1 = new BusRoute2(1, 300, 80.0, 5);

BusRoute2 bus2 = new BusRoute2(47, 400, 30.0, 10);

Subway s= new Subway("Red", bus1, bus2);

double transfer= s.getTransferPassengers();

System.out.println("Subway psgrs: "+transfer);

}}

7

b1= BusRoute

1

Draw the picture

b2= BusRoute

47

300 80.0

// Assume b1 and b2 exist

Subway s= new Subway(“Red”, b1, b2);

900 30.0

Summary-classes

•	 Classes are a pattern for creating objects
•	 Objects have:

–	 A name (reference, which is actually a memory location)
–	 A data type (their class)

• We generalize this later; objects can have many types
–	 A block of memory to hold their member data, allocated by

the ‘new’ keyword
–	 Member data, usually private, whose values are set by their

constructor, called when ‘new’ is used
•	 Member data can be built-in data types or objects of any kind

–	 Methods, usually public, to get and set all values
–	 Methods to do some computation

8

Summary- constructors

•	 A constructor is a special method
–	 Same name as the class
–	 A class can have many of them, though each must have

different arguments
–	 Has no return value (never ‘responds’)
–	 Generally sets all data members to their initial values
–	 Implements the ‘existence’ behavior
–	 Is called once when the object is first created with ‘new’ in a

program that wants to use it
•	 Example

public class Flagpole {

private double height;

public Flagpole() {height= 100.0;}

public Flagpole(double h) { height= h;}

…

}

Building Classes

•	 A window company has 3 plants
–	 A makes wood frames

•	 Produces 200 frames/day, unit cost $25/frame
–	 B makes glass

•	 Produces 200 panes/day, unit cost $5/pane
–	 C, adjacent to B, assembles windows

• Assembles 200 windows/day, unit assembly cost $12
•	 We’ll write the classes for this problem

–	 There are many alternatives; we guide you to use a
straightforward one

–	 This will not be a general solution. It will work only for
one product, taking one frame and one pane of glass. It
may seem awkward in places, but it’s a typical starting
point.

–	 Use the ‘spiral model’ to make your solution more
general in a second or third pass.

9

Plant Class

•	 Write the class Plant for plants producing
frames or glass. Ignore window assembly.

•	 Data fields:

•	 Constructor:

Plant Class Methods

•	 Don’t write any “set” methods. The plant
data is set by the constructor and we
won’t change it after that in this problem.

•	 “Get” methods, for each private field:

•	 Computational method

10

Assembly Plant Class

•	 We assemble one product from two parts. Write
class Assembly. Eclipse: New->Class Assembly

•	 Data fields:

•	 Constructor

Assembly Class Methods

•	 Don’t write any “set” or “get” methods.
• Computational methods (cost, production)

11

Main()

•	 Write a main() to create the three plants and to
output the cost per product and the production
rate.

