
1

1.00 Lecture 6

Methods and Scope

Reading for next time: Big Java: sections 2.1-2.5

Java Methods

•	 Methods are the interface or communications
between program components
–	 They provide a way to invoke the same operation from

many places in your program, avoiding code repetition
–	 They hide implementation details from the component

using the method
–	 Variables defined within a method are not visible to

users of the method; they have local scope within the
method.

–	 The method cannot see variables in the component that
calls it either. There is logical separation between the
two, which avoids variable name conflicts.

2

{

return result;}

double getDensity(double bw, double bc)
// Method makes its own copy
// of arguments bw and bc

Double result= bw/bc;

Passing Arguments (from last time)
main(…){

double boxWeight= 50; Communi-double boxCube=10;

String boxID= “Box A”; cation only

double density=getDensity via arg list,

return value(boxWeight, boxCube);

… Arguments
matched by

Return value Argument 1 Argument 2 position

Assume
method is
written first:
can’t know
main() vars

Method Exercise: step 1

• In Eclipse, create a new class AvgTest
• After its main method, write methods to:
– Return the average of three doubles
– Return the maximum of three doubles

3

Method Exercise: step 2

•	 In the main method:
–	 Call your two methods with two sets of

variables:

•	 10, 17, 55
•	 59, -3, 85

–	 Output (System.out.println) the results
•	 For this exercise:
–	 Use different variable names in your main

method (e.g. r1, r2, r3) and in the argument list
in your methods(e.g. x1, x2, x3)

Pass by copy
•	 In Java, arguments are passed from one method

to another by copy (also called by value):
–	 The called method makes a copy of the arguments. Even

if it changes their values, they do not change in the
calling method.

–	 What is the output of the following program?
public class TripleTest {

public static void main(String[] args) {

double z=5.0;

System.out.println("z main 1: "+z);

triple(z);

System.out.println("z main 2: "+z);

}

public static void triple(double z) {

System.out.println("z 1: "+z);

z *= 3;

System.out.println("z 2: "+z);

}	 }

4

Scope

•	 You’ve already seen that methods have different
scope:
–	 A variable of the same name in two methods is two

separate variables
•	 Scope of local variables, the only kind we’ve seen

so far, is defined by additional rules
•	 And, there are other kinds of variables, with their

own scope rules
•	 We’ll revisit all this later, but for now, we focus on

local variable scope

Local Variable Scope
•	 Local variables (in a method or block)

–	 Exist from point of definition to end of block
•	 Blocks are defined by curly braces{ }
•	 Blocks are most often used to define:

–	 Method body
–	 Multiple statements in if-else and loop operations

–	 Local variables are very restricted:
•	 Other methods cannot see local variables even in the same

class.
•	 Variables of the same name in different methods are

different variables
•	 More generally, variables of the same name in different

blocks are different variables
–	 Arguments to a method are local variables:

•	 The method copies them upon receipt and they live until
the ending curly brace of the method

5

Exercise
• Mark where variables d, e, i, j exist
public class ScopeTest0 {

public static void main(String[] args) {

int i= 1;

double d= 0.0;

for (int j= 0; j < 5; j++) {

double e= j;

d += i;

e += j;

System.out.println("d: "+d+" e: "+e);

}

if (d > 0) {

int j= 2;

double e= 4.0;

System.out.println("If line d: "+d+" e: "+e);

}

double e= 0.0;

e += d + i;

System.out.println("Last line d: "+ d+" e: "+e);

}

}

Scope exercise

• The following code doesn’t work. Fix it.
public static double test1() {

for (int i=0; i < 10; i++) {

if (Math.sqrt(i) > 2.5)

break;

}

return i;

}

6

Scope exercise 2

• The following code doesn’t work. Fix it.

public static double test2() {

int i= 4;

if (i*i > 6) {

int i6= i;

}

int i7= i6 + 2;

}

Scope exercise 3
// What’s wrong? Fix it. Find a general strategy to help.

public class ScopeTest {

public static void main(String[] args) {

test3();

}

public static void test3() {

int i1;

for (i1 = 0; i1 < 10; i1++)

System.out.println("d: "+getDensity(i1));

int i2;

for (i2 = 0; i2 < 10; i2++)

System.out.println("c: "+getCube(i1));

}

public static double getDensity(int i) {

return i;

}

public static double getCube(int i) {

return i * i;

}

}

