
1

1.00 Lecture 5

More on Java Data Types,
Control Structures

Introduction to Methods

Reading for next time: Big Java: 7.1-7.5, 7.8

Floating Point Anomalies

•	 Anomalous floating point values:
–	 Undefined, such as 0.0/0.0:

• 0.0/0.0 produces result NaN (Not a Number)
•	 Any operation involving NaN produces NaN as result
•	 Two NaN values cannot be equal
•	 Check if number is NaN by using methods:

– Double.isNaN(double d) or Float.isNAN(int i)
– Return boolean which is true if argument is NaN

–	 Overflow, such as 1.0/0.0:
• 1.0/0.0 produces result POSITIVE_INFINITY
• -1.0/0.0 produces result NEGATIVE_INFINITY
•	 Same rules, results as for NaN (Double.isInfinite)

–	 Underflow, when result is smaller than smallest
possible number we can represent
• Complex, not handled very well (represented as zero)

2

Example
public class NaNTest {

public static void main(String[] args) {
double a=0.0, b=0.0, c, d;
c= a/b;
System.out.println("c: " + c);
if (Double.isNaN(c))

System.out.println(" c is NaN");
d= c + 1.0;
System.out.println("d: " + d);
if (Double.isNaN(d))

System.out.println(" d is NaN");
if (c == d)

System.out.println("Oops");
else

System.out.println("NaN != NaN");
double e= 1.0, f;
f= e/a;
System.out.println("f: " + f);
if (Double.isInfinite(f))

System.out.println(" f is infinite");
}

}

Doubles as Bad Loop Counters
public class Counter {

public static void main(String[] args) {

int i= 0;

double x= 0.0;

while (x <= 10.0) {

x += 0.2;

i++;

if (i % 10 == 0 || i >= 48)

System.out.println(“x: " + x + " i: " + i);
}

}

}

3

Doubles as Bad Loop Counters

i : 10 x : 1.9999999999999998

i : 20 x : 4.000000000000001 Notice accumulating,
i : 30 x : 6.000000000000003 increasing error. Never
i : 40 x : 8.000000000000004 use floats or doubles as
i : 48 x : 9.599999999999998 loop counters (well,
i : 49 x : 9.799999999999997 almost never…)
i : 50 x : 9.999999999999996

i : 51 x : 10.199999999999996

We went one iteration too many

Exercise

• Create a class AngleTest
– Loop over angles from θmin to θmax by δ

– Output the angle
– Compute and output 1/(θmax - θ)
– Make sure you get very close to θmax

– Input θmin = 0.1, θmax = 4.0, θ = 0.1
• How close do you get?
• Does Java catch the zero divide?
• If you have time:

– Implement this with an int loop counter

4

Numerical Problems

Problem Integer Float, double

Zero divide POSITIVE_INFINITY, POSITIVE_INFINITY,
NEGATIVE_INFINITY NEGATIVE_INFINITY

0/0 NaN (not a number) NaN (not a number)

Overflow No warning. Program POSITIVE_INFINITY,
gives wrong results. NEGATIVE_INFINITY

Underflow Not possible No warning, set to 0

Rounding, Not possible No warning. Program
accumulation errors gives wrong results.

Common, “bad news” cases

More on Control Structures

•	 Three control structures in Java, or any
language, for that matter:
–	 Sequence: execute next statement

•	 This is default behavior
–	 Branching: if, else statements

•	 If, else are the primary construct used
•	 Switch statement used if many choices

–	 Iteration: while, do, for loops
•	 Additional constructs exist to terminate loops

‘prematurely’

5

Switch statement
• Used as substitute for long if-else chains

– Branch condition must be integer, can’t be String, float, etc.
– No ranges, just single values or expressions in switch

• C# allows strings as branch condition, but not Java or C++

int speed;

switch (speed/10) { // Limit= 9 mph (bicycle)

case 3: // Drop through to case 2

case 2:

System.out.println(“Arrest”);

case 1: // Drop through to case 1

System.out.println(“Ticket”);

break; // Prevent dropping through

case 0:

System.out.println(“Speed legal”);

break;

default:

System.out.println(“Invalid radar reading”);

}

Switch statement
• Used as substitute for long if-else chains

– Branch condition must be integer, can’t be String, float, etc.
– No ranges, just single values or expressions in switch

• C# allows strings as branch condition, but not Java or C++

int speed;

switch (speed/10) { // Limit= 9 mph (bicycle)

case 3: // Drop through to case 2

case 2:

System.out.println(“Arrest”);

case 1: // Drop through to case 1

System.out.println(“Ticket”);

break; // Prevent dropping through

case 0:

System.out.println(“Speed legal”);

break;

default:

System.out.println(“Invalid radar reading”);

}

6

Terminating Iteration: Break
•	 Break statement in for, while or do-while

loops transfers control to statement
immediately after end of loop

public static void main(String[] args) {

for (int i = 0; i < 20; i++) {

System.out.println(“i: “+i);

if (i*i > 20)

break; // End loop

}

System.out.println("Done");

}

// If break in inner, nested loop, control is

// transferred to the outer loop

Terminating Iteration: Continue

•	 Continue statement jumps to end of loop but

continues looping

public static void main(String[] args) {

for (int i = 0; i < 7; i++) {

System.out.println(“i: “+i);

if (i*i < 17)

continue; // Skip rest of loop

System.out.println(“i: “+i);

}

System.out.println("Done");

}

// If continue in inner, nested loop, control stays

// in inner loop

7

Control exercise

•	 Write a class LoopExercise:
– Main() method has:
• Loop over int i going from 0 to 8

– Make j = i2-1
– If j negative, skip the rest of the loop
– Find s= square root of j
– If s > 4, end the loop
– Output i, j and s to see what’s happening

•	 Print “Done” at the end of the program

Java Methods

•	 Methods are discrete units of behavior
–	 You’ve already used some:

•	 JOptionPane()
•	 Math.sqrt()
•	 System.out.println()

–	 You’ll write your own for the rest of the term, as part of
classes

–	 Right now, you are writing classes but they only have a
main() method and they create no objects

–	 We’ll write additional methods in our classes
–	 (And then create objects that have methods)
–	 For now, our methods will have the keywords public
static in them
•	 Treat them as an incantation for this and the next lecture

8

Why Use Methods

–	 Methods provide a way to invoke the same operation
from many places in your program, avoiding code
repetition

–	 Methods hide implementation details from the user of
the method

–	 Variables defined within a method are not visible to
users of the method; they have local scope within the
method. (More on scope next time)

–	 The method cannot see variables in the program
component (e.g., main()) that calls it either. There is
logical separation between the two, which avoids
variable name conflicts.

– Methods (and objects) allow programs to scale

Method example
public class MethodExample {

public static void main(String[] args) {

double boxWeight= 50;

double boxCube= 10;

String boxID= “Box A”;

double density= getDensity(boxWeight, boxCube);

System.out.println("Density: "+ density);

printBox(boxWeight, boxCube);

}

public static double getDensity(double bw, double bc) {

double result= bw/bc; // 'result' could be 'density'

return result;

}

public static void printBox(double w, double c) {

System.out.println("Box weight: "+w+" cube: "+c);

System.out.println(" Density: "+getDensity(w,c));

// System.out.println(“ ID: “+boxID); // No access to ID

} // Won’t compile!

}

9

{

return result;}

double getDensity(double bw, double bc)
// Method makes its own copy
// of arguments bw and bc

Double result= bw/bc;

Passing Arguments
main(…){

double boxWeight= 50; Communi-double boxCube=10;

String boxID= “Box A”; cation only

double density=getDensity via arg list,

return value(boxWeight, boxCube);

… Arguments
matched by

Return value Argument 1 Argument 2 position

Assume
method is
written first:
can’t know
main() vars

Method exercise

•	 Write a class MethodExercise
–	 Main() method:

•	 Declares String name, int age, double height
•	 Sets variables to your name, age, height
•	 Calls isOldEnough() method
•	 Calls printInfo() method

–	 Method isOldEnough() returns true if age >=
21, false otherwise

–	 Method printInfo prints name, age, height
–	 Choose appropriate arguments, return values

10

Homework 2

y

Pole Pole

ymin

Cable

(0,0) x

T
w

xe

y

x

 wx 

e

= cosh − + min
  T

xcosh() = 5.0 (+ −)

T
w

y

Solve for T using bisection: find T s.t. f(T)= 0
Then, calculate y for each x and print them out

Bisection
x1 m x2

0

f(x)= x2 - 2

-8 -6 -4 -2 2 4 6 8

f(x1)*f(m) > 0, so no root in [x1, m]

f(m)*f(x2) < 0, so root in [m, x2]. Set x1=m

Assume/analyze only a single root in the interval (e.g., [-4.0, 0.0])

11

-8

Bisection
x1 m x2

0

f(x)= x2 - 2

-6 -4 -2 2 4 6 8

f(m)*f(x2) > 0, so no root in [m, x2]

f(x1)*f(m) < 0, so root in [x1, m]. Set x2= m

Continue until (x2-x1) is small enough

