Lecture 36

Threads 2

Reading for next time: Big Java 4.2, 22.1-22.6

Synchronization of Threads

Once your programs use threads, you often
must deal with the conflicts and
inconsistencies threads can cause.

The two most significant problems are
synchronization and deadlock.

Synchronization, the Problem

In many situations a segment of code must be executed
either "all or nothing" before another thread can execute.

For example, suppose you are inserting a new object into
an ArrayList and the new item exceeds the current
capacity. The ArrayList method add() will need to copy
the ArrayList contents to a new piece of memory with
greater capacity and then add the new element.

If this operation is being executed by one thread and is
partially completed when another thread gets control and
attempts to get an element from the same ArrayList, we
have a problem. The interrupted first thread will have left
the partially copied vector in an inconsistent state.

(ArrayList is synchronized to avoid this problem!)

synchronized Methods

Java allows you to declare a method as synchronized to
avoid such problems.

A method definition such as
public synchronized void compute() {
// body of method
}

means that compute() can not be interrupted by another
synchronized method acting on the same object.

If another thread attempts to execute another
synchronized method on the same object, this thread will
wait until the first synchronized method exits.

synchronized Method Cautions

But note that synchronized methods only wait
for other synchronized methods.

Normal, unsynchronized methods invoked on the
same object will proceed.

— That’s usually ok. Unsynchronized methods often only
read data and don’t write it, or don’t look at the data that
might be affected by synchronization

And another thread can run another
synchronized method on another instance
(object) of the same class.

— That’s usually ok. No data errors will occur; different
objects are being used. If your different objects
manipulate a common vector, for example, there may
still be a problem.

How Synchronization Works

Java implements synchronized methods via a special lock
called a monitor that is a part of every instance of every
class that inherits from Object.

When a thread needs to enter a synchronized method, it
tries to acquire the lock on the current object.

If no other synchronized method called on this object is in
progress in any thread, then the lock is free and the thread
can proceed. But if another thread is executing a
synchronized method on the object, then the lock will not
be free and the first method must wait.

If a static method is synchronized, then the lock is part of
the object representing the class

Synchronization in the JDK

The trick is knowing when a method needs to be
synchronized. Many methods in the predefined Java
classes are already synchronized.

For instance, most methods of the ArrayList class, are
synchronized for the reason we pointed out above.

As another example, the method of the Java AWT
Component class that adds a MouseL1istener object to a
Component (so that MouseEvents are reported to the
MouseListener) is also synchronized. If you check the
AWT and Swing source code, you find that the signature of
this method is

public synchronized void

addMmouseListener(MouseListener 1)

Java Synchronization Defaults

By default, (i.e. unless you declare otherwise),
methods are NOT synchronized.

Declaring a method synchronized slows down
the execution of your program because acquiring
and releasing the locks generates overhead.

It also introduces the possibility of a new type of
failure called deadlock

However, in many cases it is essential to
synchronize methods for your program to run
correctly.

Lossless Router Example

public class RouterTest {
public static final int PORTS= 50;
public static final int BUFFER_SIZE= 10000;

public static void main(string[] args) {
Router r= new Router(PORTS);
for (int i=0; i < PORTS; i++) {
TransferThread t= new TransferThread(r, i, BUFFER_SIZE);
if (i > PORTS/2)
t.setPriority(Thread.MIN_PRIORITY);
else
t.setPriority(Thread.MAX_PRIORITY);
t.start(Q;
1
}
} // safer to have array of Threads. Non-Java threads packages
// could consider threads out of scope when t is reused

Lossless Router Example, 2

public class Router {
private int[] port;
private long packets= 0;
public Router(int n) {
port= new int[n];
}
public void transfer(int from, int to, int bytes) {
port[from] -= bytes;
port[to] += bytes;
packets++;
if (packets % 10000 == 0)
test();
}
public void test() {
int sum= 0;
for (int i= 0; i < port.length; i++)
sum += port[i];
System.out.println("Packets: "+packets+" net: "+ sum);

Lossless Router Example, 3

public class TransferThread extends Thread {
private Router router;
private int fromPort;
private int maxBytes;

public TransferThread(Router r, int f, int max) {
router= r;
fromPort= f;
maxBytes= max;
}
public void run(Q {
try {
while (!interrupted()) {
int toPort= (int) (RouterTest.PORTS * Math.random());
int bytesSent= (int) (maxBytes * Math.random());
router.transfer(fromPort, toPort, bytesSent);
sleep(1);
}
} catch (Interruptedexception e) {
}
}

1

Exercise

 Download RouterTest, Router,
TransferThread and run RouterTest

— For a long time, if necessary

» Go to Debug perspective and select
‘Terminate’ to end the program

—Is your router lossless?
— If not, what’s going on?
* Router is truly lossless
* transfer() method is correct

In case it doesn’t misbehave...

Packets: 10000 sum: 0
Packets: 20000 sum: 0
Packets: 30000 sum: 0

Packets: 630000 sum: 0
Packets: 640000 sum: 0
Packets: 650000 sum: 3281
Packets: 660000 sum: 3281
Packets: 670000 sum: 3281

Packets: 1190000 sum: 3281
Packets: 1200026 sum: 3281
Packets: 1210000 sum: -19099
Packets: 1220000 sum: -19099

Solution

— Is your router lossless?

* Yes, the hardware really is!
— If not, what’s going on?

* A synchronization problem

public void transfer(int from, int to, int bytes) {
port[from] -= bytes;
port[to] += bytes;
packets++;
if (packets % 10000 == 0)
test(Q;
}

« A thread can be interrupted by another thread
between writing port[from] and port[to], or even
during each of those statements. If the other thread
gets in between these two operations, the result will
be wrong

Solution, 2

* For example: Initial conditions
— Port 1: +500, Port 2: -300

— Thread A sends 50 bytes from port 1 to port 2
« Decrements port 1 by 50: +450
— Thread B interrupts and sends 100 bytes from
port 2 to port 1
« Decrements port 2 by 100: -400
« Increments port 1 by 100: +600 or +550, depending
on timing!
— Thread A then completes
« Increments port 2 by 50, from —300 to —250

* It overwrites thread B’s result because it had read
the current port 1 and 2 byte counts from memory
before updating them (and before thread B updated
them)

— This is a ‘race condition’: first one loses, tho!

Lossless Router

Port 1 Port2 |Thread A Thread B
+500 -300 Gets (+500, -300)
\ Moves 50 bytes 1->2

+450 Updates port 1
Interrupted by B
Has not updated port 2

+550 | -400 Gets (+450,-300)

Moves 100 bytes 2->1
Updates ports 1 and 2

250 Thread A completes

Updates port 2,
overwrites B’s update

50 50 Thread B’s decrement
bytes bytes of 100 bytes in port 2
gained |gained |lost!

Exercise, continued

* Fix the synchronization problem

— Use the synchronized keyword

* It must follow the public keyword and
precede the return type keyword

— Figure out where to use it

—When you’ve done it, compile and run it
» See if the net bytes ever stray from zero

Deadlock

When two different threads each require exclusive access
to the same resources, you can have situations where each
gets access to one of the resources the other thread needs.
Neither thread can proceed.

For example, suppose each of two threads needs exclusive
privilege to write two different files. Thread 1 could open file
A exclusively, and Thread 2 could open file B exclusively.

Now Thread 1 needs exclusive access to File B, and Thread
2 needs exclusive access to file A. Both threads are
stymied. The most common source of this problem occurs
when two threads attempt to run synchronized methods
on the same set of objects.

Deadlock Example

public class value
{
private long value;
public value(Tong v) { value=v; }
synchronized long getvalue() { return value; }
synchronized void setvalue(long v) { value=v; }
synchronized void swapvalue(value other) {
long t = getvalue(Q);
long v = other.getvalue(Q);
setvalue(v);
other.setvalue(t);

} // This 1is conceptual. There are some
// picky details to simulate deadlock that we don’t
// address. They happen in real life by themselves..

Deadlock Diagram

T ~
value a /)\ value b

[swaBVaJ—ue‘('r] [apvalue()]

After Doug Lea, Concurrent Programming in Java (2000),
excellent but advanced reference

10

The Symptoms of Deadlock

The symptoms of deadlock are that a program simply
hangs (stops executing) or that a portion of the program
governed by a particular thread is endlessly postponed.
Synchronization and deadlock problems are miserably hard
to debug because a program with such problems may run
correctly many times before it fails.

This happens because the order and timing of different
Threads' execution isn't entirely predictable.

Programs need to be correct independent of the order and
timing with which different Threads are executed.

As soon as you synchronize in order to prevent harmful
interference between threads, you risk deadlock.

Threads and Swing

All Java programs run at least three threads:

1. themain() thread; that is, the thread that begins with
your main method;

2. the event thread, on which the windowing system
notifies you of the events for which you have
registered; and,

3. the garbage collection thread.

The garbage collection thread runs in the background (at
a low priority), and you can usually forget that it is there.
But as soon as you put up a graphic user interface, you
have to take account of the event thread.

11

Threads and the AWT

* Theinitial Java GUI package, the AWT,
synchronized many methods in the GUI
classes. But it made the AWT classes
susceptible to deadlock.

« When the Java programmers set out to
implement the vastly more complex capabilities
of Swing, they, in effect, gave up.

« The AWT attempts to be multithreaded, that is,
to allow calls from multiple threads.

Threads and Swing

* With a very few exceptions, the Swing classes
expect to have their methods called only from the
event thread. As the Java developers state it:

"Once a Swing component has been realized, all
code that might affect or depend on the state
of that component should be executed in the
event-dispatching thread."

12

Threads and Swing, 2

A component is realized when the windowing system
associates it with a window that will actually paint it on the
screen.

Usually this happens when the component is first made
visible or when it is first given an accurate size (via a call to
pack(), for instance).

Up until then it can be modified from another thread like the
main thread because there is no chance that it will be
accessed from the event thread until the windowing system
knows about it.

So you can add() components to a container from the
main thread or add text to a JTextArea, as long as it is not
realized.

Threads and Swing, 3

But once it has become visible, it can receive
mouse clicks or key presses or any other type of
event, and the corresponding listener methods
may be used.

Swing does NOT synchronize these methods or
the methods that they may call such as
setText() or add().

If you want to call setText() or methods like it
from any other thread than the event thread, you
should use a special technique.

13

Modifying a GUI from Another Thread

» Essentially, you create an object that describes a
task to be performed in the event thread at some
future time.

Then you pass that task to the event thread using
a synchronized method that queues it up with the
other events in the event thread's event queue.

Swing will execute the task when it wants, but
because Swing only processes one event at a
time including these special tasks, they may call
unsynchronized methods on the GUI classes.

Using invokeLater()

How do we create such a task?
Runnable update = new Runnable() {

public void run(Q) {

component.doSomething();

};
Swingutilities.invokeLater(update);
invokeLater() is a synchronized static method
in the Swingutilities class in the
javax.swing package. It inserts the task in the
event queue.

14

Synchronized Swing Methods

There are some Swing methods that may safely be
called from another thread. These include:
public void repaint()
public void revalidate()
public void addEventTypeListener(Listener 1)
public void removeEventTypeListener(
Listener 1)

JFileViewer

import java.io.*;
import javax.swing.*;
import java.awt.*;

public class JFileviewer extends JFrame {
private static JFileviewer view;
private JTextArea text;

public JFileviewer(string path) {
super(path);
setDefaultCloseOperation(EXIT_ON_CLOSE);
text = new JTextArea(20, 60);
text.setLinewrap(true);
JscrollPane p= new JScrollPane(text, ..) // See code
Container c= getContentPane();
c.add(p, BorderLayout.CENTER);
packQ);
setVisible(true);

}

public void append(string s) {
text.append(s);

1

15

JFileViewer, 2

public static void main(String[] args) {

Sstring filename = "C:/Test.txt";

view = new JFileviewer(filename);

try {
FileReader in = new FileReader(filename);
BufferedrReader b = new BufferedReader(in);
string s;
while ((s = b.readLine()) != null) {

view.append(s + "\n");

}

in.close(Q);

} catch (IOException e) {
System.err.printin(e);
view.setvisible(false);
view.dispose(Q);
System.exit(1l);

Exercise

Download JBetterFileViewer

— This displays the scroll pane first and then adds the text
file, line by line.

— It must notify the scroll pane when it has read another
line. To do this it must create a Runnable object when it
has a new line of text and then call invokeLater() to put
the object on the Swing event list

Exercise
— Complete the main() method

— Refer to the “Using invokeLater()” slide for what to do

* You are creating an object of type Runnable that you will
place on the Swing event list by calling invokeLater with
the object as its argument

* The object will be an anonymous inner class. It must have
a run() method to implement the Runnable interface

16

JBetterFileViewer

import java.io.*; // Identical to page 1
import javax.swing.*; // of JFileviewer
import java.awt.*;

public class JBetterFileviewer extends JFrame {
private static JBetterFileviewer view;
private JTextArea text;

public JBetterFileviewer(String path) {
super(path);
setDefaultCloseoperation(EXIT_ON_CLOSE);
text = new JTextArea(20, 60);
text.setLinewrap(true);
JscrollPane p= new JScrollPane(text, ..) // See code
Container c= getContentPane();
c.add(p, BorderLayout.CENTER);
packQ;
setvisible(true);

}

public void append(String s) {
text.append(s);

1

JBetterFileViewer, 2

public static void main(string[] args) {
String filename = "C:/Test.txt";
view = new JBetterFileviewer(filename);
try {
FileReader in = new FileReader(filename);
int nread;
char [] buf = new char[512];
while((nread = in.read(buf)) >=0) {
final string s= new string(buf, 0, nread);
// Your code here:
// Create an object of type Runnable
// Write its run() method
// call dinvokeLater()
}
in.close(Q);
}
catch (IOException e) {
System.err.printin(e);
view.setvisible(false);
view.dispose();
System.exit(l);

17

w

Common Sense Rules for Threads

Only use multiple Threads when they are essential:

* Multiple streams, multiple computations and it’s too slow to
do them in sequence

Decide whether the methods you wrote may need to be
synchronized:

* Are they altering common resources across threads?

* When in doubt, declare methods as synchronized.

Make sure Threads die off as soon as they aren't needed.

If different runs of the same program with more than one
thread execute differently even though they are given the
same inputs, you probably have a synchronization
problem

e These can be very hard to find and correct

18

