1.00 Lecture 33

Sorting 1

Reading for next time: review Big Java 18.1-18.3

Sorting Order

» Sorting implies that the items to be sorted are
ordered. We use the same approach that we
employed for binary search trees .

* That is, we will sort Objects, and whenever we
invoke a sort,

— Either the sort routine can assume that the objects to be
sorted belong to a class that implements Comparable
(method compareTo), or

— We supply a Comparator to order the elements to be
sorted
» Comparator interface has a method Compare
* In our examples, we assume the objects
implement Comparable

Sort Methods

* We cover three representative methods from a
large set:

— Insertion sort, an ‘elementary’ method that is slow but
ok for small data sets (a few thousand items or less)

— Quicksort, the fast, standard method for large data sets,
but requires some care

— Counting sort, an even faster method used in a common
‘special case’
* We assume the objects we’re sorting have two
fields:
— Key, which is the element we sort on (e.g. name)

— Value, which is the related value we want (e.g., phone
number, or email address, or...)

Insertion Sort

» Insertion sorting is a formalized version of the
way most of us sort cards. In an insertion sort,
items are selected one at a time from an unsorted
list and inserted into a sorted list.

* Itis a good example of an elementary sort. It runs
slowly, which is ok on small datasets but
unacceptable on large ones.

* To save memory and unnecessary copying we
sort the array in place.

— We use the low end of the array to grow the sorted list
against the unsorted upper end of the array.

Insertion Sort Diagram

Sorted Unsorted
s A N\ —
Initially 7 4 3 6 3
Sorted Unsorted
A A —
After 1
Arer 4 7 3 6 3
insertion
Sorted Unsorted
A — P A
After 3
Amer 3 4 6 7 3
insertions

Run the InsertionsSort Simulation

Download InsertionSort2004.jar, the
simulation that you will use to examine the
algorithm, into a convenient folder

— Double-click it in Windows to run it.

— Don’t import it into Eclipse.

Type in a series of numbers each followed
by a return. These are the numbers to sort.

Click start and then stepInto to single
step through the code.

reset restarts the current sort.
new allows you to enter a new set of data

InsertionSort Questions

Use the simulator to explore the following
questions :

— How many elements have to be moved in the
inner for loop if you run InsertionSort on an
already sorted list? Does it run in O(1), O(n), or
O(n?) time?

— What order of elements will produce the worst
performance? Does this case run in O(1), O(n),
or O(n?) time? Why?

Insertion Sort Code

public class InsertionSortTest {

private static class Item implements Comparable {
public double key;
public string value;

public Item(double k, String v) {
key= k;
value= v; }

public int compareTo(Object o) {

Item other= (Item) o;

if (key < other.key)
return -1;

else if (key > other.key)
return 1;

else
return 0;

Insertion Sort Code p.2

public static void sort(Comparable[] d) { sort(d, 0, d.length-1);}

public static void sort(Comparable[] d, int start, int end) {
Comparable key;
int 1, j;
for (j= start +1; j <= end; j++) {
key= d[j];
for (i= j-1; i >= 0 && key.compareto(d[i]) < 0; i--)
d[i+1]= d[i];
d[i+1]= key;
}
public static void main(string[] args) {
Item b= new Item(3, "Wednesday");
Item d= new Item(0, "Sunday");
Item a= new Item(5, "Friday");
Item c= new Item(2, "Tuesday");
Item[] days= {a, b, c, d};
sort(days);
for (int i=0; i < days.length; 1i++)
System.out.printin(days[i].key +
1} 3}

+ days[i].value);

Quicksort overview

» Most efficient general purpose sort, O(n Ig n)

» Basic strategy
— Split array (or vector) of data to be sorted into 2
subarrays so that:
» Everything in first subarray is smaller than a known value
» Everything in second subarray is larger than that value
— Technique is called “partitioning’
* Known value is called the ‘pivot element’
— Once we’ve partitioned, pivot element will be located
in its final position
— Then we continue splitting the subarrays into
smaller subarrays, until the resulting pieces have
only one element (recursion!)

Quicksort algorithm

Choose an element as pivot. We use right element
Start indexes at left and (right-1) elements

Move left index until we find an element> pivot
Move right index until we find an element < pivot

If indexes haven’t crossed, swap values and repeat
steps 3and 4

If indexes have crossed, swap pivot and left index
values

7. Call quicksort on the subarrays to the left and right
of the pivot value

akrwpdpPE

o

Example

Quicksort(a, 0, 6)
Original 4T5 89 55 85 59 79 65
| >< j—j pivot
1stswap 45 50 55 §§ 80 70 65
| —— || «—
2rdswap 45 50 55 65 80 70 85

quicksort(a,0,2)] quicksort(a,4,6)
final position

Partitioning

« Partitioning is the key step in quicksort.

 In our version of quicksort, the pivot is chosen to be the
last element of the (sub)array to be sorted.

» We scan the (sub)array from the left end using index Tow
looking for an element >= pivot.

* When we find one we scan from the right end using index
high looking for an element <= pivot.

« If Tow < high, we swap them and start scanning for another
pair of swappable elements.

« If Tow >= high, we are done and we swap low with the
pivot, which now stands between the two partitions.

Another Partitioning Example

N
[8]4]3[6]2]6[9]7]5]
=

N
[2]4]3] WM [8l6]o]7]6]
N

)
(2 /SN (4] B (e [o]7 5]
"

(2 /N4] B (o] (7] (o]

—— partition swap current pivot

pivot swap Old pivot

Quicksort Exercise

* Download and double click the
Quicksort2004. jar file to run the simulation
— It works the same way as the InsertionSort simulation.
— Use the simulator slowly. If you click too quickly it may
lose events and show incorrect results. Sorry!
* Quicksort questions:
— What is the worst case behavior for quicksort?

— What happens when you quicksort an already-sorted
array?

A Better Quicksort

« The choice of pivot is crucial to quicksort's performance.

The ideal pivot is the median of the subarray, that is, the
middle member of the sorted array. But we can't find the
median without sorting first.

« It turns out that the median of the first, middle and last
element of each subarray is a good substitute for the
median. It guarantees that each part of the partition will
have at least two elements, provided that the array has at
least four, but its performance is usually much better. And
there are no natural cases that will produce worst case
behavior.

¢ Other improvements:

— Convert from recursive to iterative, for efficiency, and always
process shortest subarray first (limit stack size, pops, pushes)

— When subarray is small enough (5-25 elements) use insertion
sort; it’s faster on small problems

Quicksort main(), exchange

import javax.swing.*;
public class QuicksortTest {
public static void main(String[] args) {
String input= JOptionPane.showInputDialog("Enter no element");
int size= Integer.parseInt(input);
Integer[] sortdata= new Integer[size];
sortdata[0]= sortdata[size-1]= new Integer(500);
for (int i=1l; i < size-1; i++)
sortdata[i]l= new Integer((int) (1000*Math.random()));
sort(sortdata, 0, size-1);
System.out.printin("Done");
if (size <= 1000)
for (int i=0; i < size; i++)
System.out.println(sortdatali]);
System.exit(0);

}
public static void exchange(Comparable[] a, int i, int j) {
Comparable o= a[i]; // Swaps a[i] and a[j]
a[il= a[jl;
aljl= o;
}

Quicksort, partition

public static int partition(Comparable[] d, int start, int end) {
Comparable pivot= d[end]; // Partition element
int Tow= start -1;
int high= end;
while (true) {
while (d[++1ow].compareTo(pivot) < 0) ; // Mv indx right
while (d[--high].compareTo(pivot) > 0 & high > Tow); //L

if (low >= high) break; // Indexes cross
exchange(d, low, high); // Exchange elements
}
exchange(d, Tow, end); // Exchange pivot, right
return low;

}

public static void sort(Comparable[] d, int start, int end) {
if (start >= end)
return;
int p= partition(d, start, end);
sort(d, start, p-1);
sort(d, p+l, end);

Quicksort vs Insertionsort

* Demo: sorting random ints:
— 10,000 elements
— 1,000,000 elements
* PC speed is about 1GHz or 1 billion ops/second
O(n Ig n) when n= 1,000,000 is ~20,000,000
Each element takes perhaps 40 instructions

So quicksort does about 1 billion instructions to sort 1
million elements, which takes about 1 second

Insertion sort takes 1,000,000/20, or 50,000 times longer
o 7777777.....
* Quicksort with ints rather than Integers or other
Objects runs about ten times faster
— Object overhead (memory allocation)
* No changes needed for quicksort to use ltems
with keys and values like insertionsort

Exercise

* Finish class StudentTest to sort Students by name

— We give you a simple Student class (static nested)
» Data: String name, int year (1-4).
¢ Constructor
— Implement Comparable interface: write compareTo()
— Use the insertion sort compareTo() example as a guide
— You can’t use < or > to compare Strings
— Strings implement Comparable, so use that:
if (name.compareTo(other.name) < 0)..
* We give you most of StudentTest’s main() method:
« We create 5 Student objects, put them in an array for you
* You must pass the array to the quicksort method
* We output the results for you

10

Exercise, p.1

public class StudentTest {
private static class Student implements Comparable{
private String name;
private int year;
public Sstudent(String n, int y) {
name= n;
year= y;
}
public int compareTo(Object o) {
// Complete the code
// Use insertion sort compareTo() as example

Exercise, p.2

public static void main(string[] args) {

Student[] sArray= { new Student("Amy ", 1),
new Student("zane ", 2),
new Student("Janet", 3),
new Student("wen ", 4),
new Student("Chris",3) };

int size= sArray.length;

// call the quicksort method here (sort())

for (int i=0; i < size; i++)

System.out.printin(sArray[i].name+ " " +
sArray[i].year);

11

