
1.00 Lecture 32

Hashing

Reading for next time: Big Java 18.1-18.3

Motivation

•	 Can we search in better than O(lg n) time, which
is what a binary search tree provides?

•	 For example, the operation of a computer
memory does considerably better than this. A
computer memory takes a key (the memory
address) to insert or retrieve a data item (the
memory word) in constant (O(1)) time.
–	 Access times for computer memory do not go up as the

size of the computer memory or the proportion used
increases.

1

Direct Addressing

•	 Computer memory access is a special case of a
technique called direct addressing in which the
key leads directly to the data item.

•	 Data storage in arrays is another example of
direct addressing, where the array index plays
the role of key.

•	 The problem with direct addressing schemes is
that they require storage equal to the range of all
possible keys rather than proportional to the
number of items actually stored.

Direct Addressing Example

•	 Let's use the example of social security numbers.
•	 A direct addressing scheme to store information

on MIT students based on social security number
would require a table (array) of 1,000,000,000
entries since a social security number has 9
digits.

•	 It doesn't matter whether we expect to store data
on 100 students or 100,000,000.

•	 A direct addressing scheme will still require a
table that can accommodate all 1 billion potential
entries.

2

Hashing

•	 Hashing is a technique that provides speed
comparable to direct addressing (O(1)) with lower
memory requirements (O(n), where n is the
number of entries actually stored in the table).
–	 If the number of entries actually stored in the table is

comparable to the maximum possible number, don’t use
hashing. Just use an array.

•	 Hashing uses a function to generate a pseudo­
random hash code from the object key and then
uses this hash code (~direct address) to index
into the hash table.

Hashing Example

•	 Suppose that we want a small hash table with a
capacity of 16 entries to store English words.

•	 Then we will need a hash function that will map
English words to the integers 0, 1, ..., 15.

•	 We usually divide the task of creating a hash
function into two parts:
1. Map the key into an integer. (hash1 function)
2. Map the integer "randomly" or in a well distributed way

to the range of integers ({ 0, ..., m-1 }, where m is the
capacity (or number of entries) that will be used to
index into the hash table. (hash2 function)

3

•

•

.

l

0
1
2
3
4
5
6
7
8
9

Hash Code Example

As an example, consider the hash code that takes
the numeric value of the first character of the
word and adds it to the numeric value of the last
character of the word (hash1), then takes the
remainder mod 16 (hash2).
For instance, the numeric value of a "c" is 99 and
of a "r" is 114. So, "car" would hash to (99 + 114)
mod 16 = 5

Hash Code Diagram

Universe
of Keys

car

house

dorm

co or

10
11
12
13
14
15

4

Collisions

•	 "car" and "color" hash to the same value using
this hash function because they have the same
first and last letter. Our hash function may not be
as "random" as it should be.

•	 But if n > m, duplicate hash codes, otherwise
known as collisions, are inevitable.

•	 In fact, even if n < m, collisions are likely as a
consequence of von Mises argument (also known
as the birthday paradox: if there are 23 people in
a room, the chance that at least two of them have
the same birthday is greater than 50%).

Exercise 1
•	 Create a FirstHash class (no download)

–	 Don’t call it HashTest (will conflict with later download)

•	 Write a public static int hash1(String) method
–	 Use c= charAt(int i) in a loop to get each character in

String
–	 Use int k= c to get the integer value of the character
–	 Your hash1 value will be the sum of the k values

•	 Write a main() method:
–	 Compute hash values (ints) using your hash1() method

for the following Strings:
•	 Red, blue, yellow, green, orange, black, brown, purple

–	 Use the mod (%) operator to map your 8 ints into a hash
table of size 10 (0-9)

•	 This is the hash2 function: h2= h1 % 10
–	 Print out your results

•	 Are there any collisions?
•	 Do you think your hash function is good?

5

Exercise 1
public classpublic classpublic classpublic class FirstHashFirstHashFirstHashFirstHash {{{{

public static void main(String[]public static void main(String[]public static void main(String[]public static void main(String[] argsargsargsargs) {) {) {) {
String[] colors= {"red", "blue", "yellow", "green",String[] colors= {"red", "blue", "yellow", "green",String[] colors= {"red", "blue", "yellow", "green",String[] colors= {"red", "blue", "yellow", "green",

"orange", "black", "brown", "purple"};"orange", "black", "brown", "purple"};"orange", "black", "brown", "purple"};"orange", "black", "brown", "purple"};
// Loop thru colors array:// Loop thru colors array:// Loop thru colors array:// Loop thru colors array:

// Compute hash1 value (call method below)// Compute hash1 value (call method below)// Compute hash1 value (call method below)// Compute hash1 value (call method below)
// Compute hash2 value (hash1 mod 10)// Compute hash2 value (hash1 mod 10)// Compute hash2 value (hash1 mod 10)// Compute hash2 value (hash1 mod 10)
// Print out String, hash1, hash2// Print out String, hash1, hash2// Print out String, hash1, hash2// Print out String, hash1, hash2

}}}}

public staticpublic staticpublic staticpublic static intintintint hash1(String s) {hash1(String s) {hash1(String s) {hash1(String s) {
// Initialize hash value to 0// Initialize hash value to 0// Initialize hash value to 0// Initialize hash value to 0
// Loop thru all characters in s (use s.length())// Loop thru all characters in s (use s.length())// Loop thru all characters in s (use s.length())// Loop thru all characters in s (use s.length())

// Get character at each position (// Get character at each position (// Get character at each position (// Get character at each position (s.charAt(is.charAt(is.charAt(is.charAt(i))))))))
// Convert character to// Convert character to// Convert character to// Convert character to intintintint ((((intintintint k= c)k= c)k= c)k= c)
// Add k to hash value; return it when done// Add k to hash value; return it when done// Add k to hash value; return it when done// Add k to hash value; return it when done

}}}}
}}}}

Hashing Tasks

1.	 Designing an appropriate hash function to
assign hash codes to keys in such a way that a
non-random set of keys generates a well-
balanced, "random" set of hash codes;

If the hash codes aren’t random, excessive collisions
will “clump” the keys under the same direct
address.

2.	 Coping with any collisions that arise after
hashing.

6

Chaining to Avoid Collisions

•	 Chaining is a simple and efficient approach to managing
collisions.

•	 In a hash table employing chaining, the table entries,
usually known as slots or buckets, don't contain the stored
objects themselves, but rather linked lists of objects.

•	 Objects with colliding keys are inserted on the same list.
•	 Insertion, search, and deletion become 2 step processes:

1. Use the hash function to select the correct slot.
2. Perform the required operation on the linked list that is

referenced at that slot.

Chaining Illustration

keys = { a, b, c, d, aa, bb, cc, dd }

0

1

2

3

c

b

d a

bb

aa

dd

cc

7

Load Factor and Performance

•	 The ratio of the number of items stored, n, to the number of
table slots, m, n/m, is called the table's load factor.

•	 Because the linked lists referenced by the hash slots can
accommodate an arbitrary number of elements, there is no
limit on the capacity of a hash table that employs chaining.

•	 If the hash function employed does not distribute the keys
well, the performance of the table will degrade.

•	 The worst case for a hash table as for a binary search tree
is that of the linked list. This occurs when all the keys hash
to the same slot.

•	 Given a good hash function, however, it can be proved that
a hash table employing chaining with a load factor of L can
perform the basic operations of insertion, search, and
deletion in O(1 + L) time.

•	 For efficiency, keep load factor ≤≤≤≤ 5 (5 (5 (5 (when using chaining)

JavaJavaJavaJava hashCodehashCodehashCodehashCode()
()()()

•	 In an object-oriented language like Java, the first phase of
hashing, the hash1 function, is the responsibility of the key
class (the data type being stored in the hash table), not the
hash table class.

•	 The hash table will be storing entries as ObjectObjectObjectObjects. It does
not know enough to generate a hash code from the ObjectObjectObjectObject,
which could be a StringStringStringString, an IntegerIntegerIntegerInteger, or a custom object.

•	 Java acknowledges this via the hashCodehashCodehashCodehashCode()()()() method in
ObjectObjectObjectObject. All Java classes implicitly or explicitly extend
ObjectObjectObjectObject. And ObjectObjectObjectObject possesses a method hashCodehashCodehashCodehashCode()()()() that
returns an intintintint.

•	 Caution: the hashCodehashCodehashCodehashCode()()()() method can return a negative
integer in Java; if we want a non-negative number, and we
usually do, we have to take the absolute value of the
hashCodehashCodehashCodehashCode().().().().

8

Hash Code Design

•	 There is more art than science in hashing,
particularly in the design of hash1 functions.
–	 “Art” should terrify you in this context!

•	 The ultimate test of a good hash code is that it
distributes its keys in an appropriately "random"
manner.

•	 There are a few good principles to follow:
1. A hash code should depend on as much of the key as

possible.
2. A hash code should assume that it will be further

manipulated to be adapted to a particular table size, the
hash2 phase.

The hash2 Function

•	 Once the hashCodehashCodehashCodehashCode()()()() method returns an intintintint, we must still
distribute it, the hash2 role, into one of the m slots, h,
0≤≤≤≤h<<<<m. The simplest way to do this is to take the absolute
value of the modulus of the hash code divided by the table
size, m:

k = Math.abs(Math.abs(Math.abs(Math.abs(o.hashCodeo.hashCodeo.hashCodeo.hashCode() % m);() % m);() % m);() % m);

•	 This method may not distribute the keys well, however,
depending on the size of m. In particular, if m is a power of
2, 2p, then this hash2 will simply extract the low order p bits
of the input hash.

•	 If you can rely on the randomness of the input hash1, then
this is probably adequate. If you can’t, it is advisable to use
a more elaborate scheme by performing an additional hash
using the input hash as key.

9

Integer Hashing

A good method to hash an integer (including our hash codes)
multiplies the integer by a number, A, 0<A<1, extracts the
fractional part, multiplies by the number of table slots, m,
and truncates to an integer. In Java, if nnnn is the integer to be
hashed, this becomes

privateprivateprivateprivate intintintint hashCodehashCodehashCodehashCode((((intintintint n) {n) {n) {n) {
double t = Math.abs(n) * A;double t = Math.abs(n) * A;double t = Math.abs(n) * A;double t = Math.abs(n) * A;
return ((return ((return ((return ((intintintint) ((t) ((t) ((t) ((t ­­­­ ((((int)tint)tint)tint)t) * m));) * m));) * m));) * m));

}}}}

Unintuitively, certain values of A seem to work much better
than others. The literature suggests that the reciprocal of
the golden ratio, (sqrt(5.0) - 1.0) / 2.0) works.

Hash Table Implementation

•	 We are going to implement our hash table
(HashMapHashMapHashMapHashMap) as a MapMapMapMap with keys and values.

•	 A HashMapHashMapHashMapHashMap is unordered. The items in the hash
table have no order at all.

•	 We are using singly linked lists to resolve
collisions.

•	 Since our single linked list implementation from
the earlier lecture is not a map and does not
accommodate keys and values, we have
embedded a reduced implementation of a singly
linked list map in the HashMapHashMapHashMapHashMap class itself.

10

Sample Hashtable with Chaining

Entry [] tableEntry [] tableEntry [] tableEntry [] table

...

slot 0

slot 1

slot 2

slot 3

slot n-1

If nothing in slot

K V K V

K V

K V null

null

K V K V null

K V null

null

(You’ve seen this before: this is the same as the graph adjacency list!)

Map Members

public interfacepublic interfacepublic interfacepublic interface SimpleMapSimpleMapSimpleMapSimpleMap {{{{

// Inserts the key and value// Inserts the key and value// Inserts the key and value// Inserts the key and value

public void put(Object key, Object value);public void put(Object key, Object value);public void put(Object key, Object value);public void put(Object key, Object value);

// Returns the value// Returns the value// Returns the value// Returns the value

public Object get(Object key);public Object get(Object key);public Object get(Object key);public Object get(Object key);

// Empty the map// Empty the map// Empty the map// Empty the map

public void clear();public void clear();public void clear();public void clear();

// Is map empty?// Is map empty?// Is map empty?// Is map empty?

publicpublicpublicpublic booleanbooleanbooleanboolean isEmptyisEmptyisEmptyisEmpty();();();();

// Number of entries// Number of entries// Number of entries// Number of entries

publicpublicpublicpublic intintintint size();size();size();size();

}}}}

11

SimpleHashMapSimpleHashMapSimpleHashMapSimpleHashMap Members

public classpublic classpublic classpublic class SimpleHashMapSimpleHashMapSimpleHashMapSimpleHashMap implementsimplementsimplementsimplements SimpleMapSimpleMapSimpleMapSimpleMap {{{{

privateprivateprivateprivate intintintint length = 0;length = 0;length = 0;length = 0;

private Entry [] table = null;private Entry [] table = null;private Entry [] table = null;private Entry [] table = null; // Heads of chains// Heads of chains// Heads of chains// Heads of chains

publicpublicpublicpublic SimpleHashMapSimpleHashMapSimpleHashMapSimpleHashMap((((intintintint slots) {
slots) {slots) {slots) {

table = new Entry[slots];
table = new Entry[slots];table = new Entry[slots];table = new Entry[slots];

clear();
clear();clear();clear();

}}}}

private static class Entry {private static class Entry {private static class Entry {private static class Entry {

final Object key;final Object key;final Object key;final Object key; // Package access// Package access// Package access// Package access————remember that?remember that?remember that?remember that?

Object value;Object value;Object value;Object value;

Entry next;Entry next;Entry next;Entry next;

Entry(Object k, Object v, Entry n) {Entry(Object k, Object v, Entry n) {Entry(Object k, Object v, Entry n) {Entry(Object k, Object v, Entry n) {

key = k; value = v; next = n; }
key = k; value = v; next = n; }key = k; value = v; next = n; }key = k; value = v; next = n; }

}
}}}

Exercise 2

• Download SimpleMap, SimpleHashMap,
SimpleHashTest

• Write one of the utility methods for
SimpleHashMap, clear()
– clear() removes all Entries from the table, sets length=0

Entry [] tableEntry [] tableEntry [] tableEntry [] table

...

slot 0
slot 1
slot 2
slot 3

slot n-1

If nothing in slot

K V K V

K V

K V null

null

K V K V null

K V null

null

12

Exercise 3

•	 Write the put() method to place an
Entry in the table:

public void put(Object k, Object v)
public void put(Object k, Object v)public void put(Object k, Object v)public void put(Object k, Object v)

{
{{{
// Invoke Object// Invoke Object// Invoke Object// Invoke Object k’sk’sk’sk’s hashCodehashCodehashCodehashCode() method() method() method() method

// Remember to get the absolute value// Remember to get the absolute value// Remember to get the absolute value// Remember to get the absolute value

// Use % operator to find index in table// Use % operator to find index in table// Use % operator to find index in table// Use % operator to find index in table

// Create new Entry with k, v, Entry ref// Create new Entry with k, v, Entry ref// Create new Entry with k, v, Entry ref// Create new Entry with k, v, Entry ref

}}}}

// Assume k not null, no duplicate keys// Assume k not null, no duplicate keys// Assume k not null, no duplicate keys// Assume k not null, no duplicate keys

Exercise 3, p.2

• Insert the new Entry as the first Entry in the
chain. Use the previous table[index] reference to
point to the next Entry in the chain

Entry [] tableEntry [] tableEntry [] tableEntry [] table

...

slot 0
slot 1
slot 2
slot 3

slot n-1

If nothing in slot

K V K V

K V

K V null

null

K V K V null

K V null

null

K V

13

Exercise 4

•	 Write the get() method to return whether a
key exists in the table and, if so, return its
value
public Object get(Object k) {public Object get(Object k) {public Object get(Object k) {public Object get(Object k) {

// Assume k is not null, no duplicate keys// Assume k is not null, no duplicate keys// Assume k is not null, no duplicate keys// Assume k is not null, no duplicate keys

// Find table index of k as before:// Find table index of k as before:// Find table index of k as before:// Find table index of k as before:

//////// findfindfindfind k’sk’sk’sk’s hash value and mod (%) ithash value and mod (%) ithash value and mod (%) ithash value and mod (%) it

// Start at that table index and walk// Start at that table index and walk// Start at that table index and walk// Start at that table index and walk

// the chain looking for k. If found, return it// the chain looking for k. If found, return it// the chain looking for k. If found, return it// the chain looking for k. If found, return it

// It’s just like walking a linked list:// It’s just like walking a linked list:// It’s just like walking a linked list:// It’s just like walking a linked list:

// while (current != null) …// while (current != null) …// while (current != null) …// while (current != null) …

}}}}

•	 When this works, run SimpleHashTest

SimpleHashTest
public classpublic classpublic classpublic class SimpleHashTestSimpleHashTestSimpleHashTestSimpleHashTest {{{{

public static voidpublic static voidpublic static voidpublic static void main(Stringmain(Stringmain(Stringmain(String[][][][] argsargsargsargs) {
) {) {) {
SimpleHashMap1 h= new SimpleHashMap1(20);
SimpleHashMap1 h= new SimpleHashMap1(20);SimpleHashMap1 h= new SimpleHashMap1(20);SimpleHashMap1 h= new SimpleHashMap1(20);
h.put("Kennethh.put("Kennethh.put("Kennethh.put("Kenneth", "3", "3", "3", "3­­­­1975");
1975");1975");1975");
h.put("Maryh.put("Maryh.put("Maryh.put("Mary", "3", "3", "3", "3­­­­1325");
1325");1325");1325");
h.put("Aileneh.put("Aileneh.put("Aileneh.put("Ailene", "3", "3", "3", "3­­­­5234");
5234");5234");5234");
h.put("Michaelh.put("Michaelh.put("Michaelh.put("Michael", "3", "3", "3", "3­­­­6543");
6543");6543");6543");
h.put("Ferdh.put("Ferdh.put("Ferdh.put("Ferd", "3", "3", "3", "3­­­­6350");
6350");6350");6350");
String phone= (String)String phone= (String)String phone= (String)String phone= (String) h.get("Ferdh.get("Ferdh.get("Ferdh.get("Ferd");
");");");
System.out.println(phoneSystem.out.println(phoneSystem.out.println(phoneSystem.out.println(phone);
);););
h.remove("Ferdh.remove("Ferdh.remove("Ferdh.remove("Ferd");
");");");
phone= (String)phone= (String)phone= (String)phone= (String) h.get("Ferdh.get("Ferdh.get("Ferdh.get("Ferd");
");");");
if (phone != null)
if (phone != null)if (phone != null)if (phone != null)

System.out.println(phoneSystem.out.println(phoneSystem.out.println(phoneSystem.out.println(phone););););
elseelseelseelse

System.out.println("Ferd'sSystem.out.println("Ferd'sSystem.out.println("Ferd'sSystem.out.println("Ferd's not in the book");not in the book");not in the book");not in the book");
}}}}

}}}}

14

The HashTest Application

HashTest Introduction

HashTest.javaHashTest.javaHashTest.javaHashTest.java::::

•	 Allows a user to select any Java class with a constructor
that takes a single String argument,

•	 Creates 235 instances of the class, using the names of past
1.00 students and the String constructor of the class,

•	 Inserts the resulting instances into a HashMap and creates
a histogram representing the distribution of the objects in
the HashMap.

•	 By examining this histogram, we can gain insight into the
efficacy of the hashCode method defined in the class we
used.

15

HashTest Download

•	 Download the following 10 files: ResultViewer.java,
SimpleHash.java, ConstantHash.java, MapIterator.java,
Map.java, HashMap.java, HashMain.java,
FirstLastName.java, jas.jar, and name.txt

•	 Import them all into your Lecture32 project in Eclipse
–	 Or you may want to create a new project (Lecture32Hash) to

keep these separate from the code you just wrote
•	 Select (right-click) the project, and from its pop-up menu,

select Properties.
–	 In the Properties dialog, select the Java Build Path page.
–	 Click the Libraries tab.
–	 If jas.jar isn’t shown:

• Click the Add JARs button (internal JAR)
• Choose jas.jar and hit ‘OK’

•	 Save/compile the project

Experimenting withExperimenting withExperimenting withExperimenting with HashTestHashTestHashTestHashTest

•	 Create a histogram for java.lang.String by executing
HashTest and clicking on the "Create New" button.

•	 What is the largest number of collisions for any single list?
•	 What is the smallest number?
•	 How many lists are empty?
•	 Click the overlay button and enter javax.swing.JFrame.

Which class appears to have the better hashCode
implementation, String or JFrame? Why?

•	 We made two classes to experiment with: ConstantHash
and SimpleHash. Open the source for these classes and
examine their hashCode methods.

•	 Overlay these classes with Swing classes JFrame, JLabel,
JButton, JCheckBox, JFileChooser (very slow), JMenu,
JPasswordText, or others (see Javadoc).
–	 Which are better? Worse?

16

A Final Word
•	 Hashing doesn’t preserve order in the data:

–	 Hash table data isn’t sorted, unlike binary search tree data

•	 Hashing is statistical.
–	 If you’re hashing billions of items per day (or night), you

will be unlucky sometimes, and a system’s search/retrieval
time will slow to a crawl

–	 In industry, a VP calls on your beeper at 2am to have you
fix the system, if it dies at 2am. The VP is usually mad.

•	 If you make your hash tables very big, that offsets
the benefits of its faster speed than trees
–	 Memory allocation is slow and expensive

•	 So…choose carefully
–	 I never used search hashing in a real system, always using

a balanced tree, but your situations may differ.

•	 Other forms of hashing (linear probing for search,
and cryptographic hashes) are somewhat different

17

