1.00 Lecture 31

Streams 2

Reading for next time: Big Java 18.6-18.8, 20.1-20.4

The 3 Flavors of Streams

In Java, you can read and write data to a file:
— as text using FileReader and Filewriter

— as binary data using DataInputStream
connected to a FileInputStreamand as a
DataOutputStream connected to a
FileOutputStream

— as objects using an ObjectInputStream
connected to a FileInputStreamand as an
ObjectOutputStream connected to a
FileOutputStream

Binary data files

0 30 34 42

0 | Jennifer Wang 198
42 | Helen Smithson | 198
84 | Rashika Mathews | 198
126 | Ferd Johnson 198

alajo|o

168
The file is just a stream of bytes on disk:

30 34 42 72 76 84 114 118 126 156 164

Jen.. | 1984 | 5.0 Hel.. | 1985 | 5.0 Ras. | 1983 | 5.0 Ferd | 1981 | 5.0

We can access this file at any place within it. It has a file pointer
that indicates the position of the next byte to be read or written.
It can be set by the seek(int bytes) method.

Unlike the text files we just read and wrote, we can’t view
binary files in a text editor and make any sense of them.

Students in binary files

import java.io.*;

public class RandomStudentFile {

public static final int NAME_SIZE = 15;
public static final int RECORD_SIZE = NAME_SIZE * 2 + 4 + 8;
public static void main(string[] args) {
Student[] team= new Student[4]; I
// A11 strings in Student MUST be of length NAME_SIZE .:-:::::::::::
team[0]= new Student("Jennifer wang ", 1984, 5.0);
team[1]= new Student("Helen Smithson ", 1985, 5.0);
team[2]= new Student("Rashika Mathews", 1983, 5.0);
team[3]= new Student("Ferd Johnson ", 1981, 5.0);
try {
FileOutputStream f= new FileOutputStream("studentRandom.txt");
DataOutputStream out= new DataOutputStream(f);
writeData(team, out);
out.close();
RandomAccessFile in=new RandomAccessFile("studentRandom.txt","r");
Student[] newTeam= readbata(in);
in.close();
for (int i=0; i < newTeam.length; i++)
System.out.printin(newTeam[i]);
} catch(IOException e) { System.out.printinCe); } }

Students in binary files, p.2

public static void writeData(Student[] s, DataOutputStream out)
throws IOException {
for (int i= 0; i < s.length; i++) {
String name= s[i].getName(Q);
int year= s[i].getyear();
double gpa= s[i].getGpa(Q);
out.writeChars(name);
out.writeInt(year);
out.writeDouble(gpa);
}
}
public static Student[] readpataRecord(RandomAccessFile in)
throws IOException {
int n= (int) (in.length()/ RECORD_SIZE);
student[] s= new Student[n];
for (int i=n-1; i >=0; i--) {
int j= (n-1) - 1; // Reverse order of students
s[j]l= new Student();
in.seek (i *RECORD_SIZE) ;
readDataFields(in, s[j1);
}

return s;

Students in binary files, p.3

public static void readpataFields(DataInput in,
Student s) throws IOException {
stringBuffer b = new StringBuffer(NAME_SIZE);
for (int i = 0; i < NAME_SIZE; i++) {
char ch = in.readchar(Q;
b.append(ch);
}
s.setName(b.tostring(Q);
s.setYear(in.readint());
s.setGpa(in.readbouble());
}
1
// Strings are immutable (implicitly final) in Java
// To mess with a string, we use a StringBuffer, which we can
// then change to a String when we’re done. A bit weird.

Exercise 1

 Download RandomStudentFile

e Questions:

— In older languages we spent a lot of time
counting and manipulating bytes. Were they
the good old days? Or is this a big pain?

— Why do you think we stack DataOutputStream
on FileOutputStream?

Exercise 2

* Modify readDataRecord() to read the students in
order 0, 2, 3, 1 (Wang, Mathews, Johnson,
Smithson) into Team

— Don’t need to be fancy about implementing the order
e Hint: Create int[] order={0,2,3,1}; and a loop
« Or just use 4 seek statements, one per student

— Side note: closing the “last” stream (the one you read or
write) closes all the other streams stacked with it

Comment on Exercise 2

« Comment:

— Databases have replaced random access files
in most current applications if sophisticated
data manipulation is required.

— If sophisticated data manipulation is not
required, text files are used: much easier to
debug, more portable

— Binary files used to be common but shouldn’t
be used much these days

— RandomAccesskFile is the only Java stream
that allows reading and writing; it’s the
exception!

The 3 Flavors of Streams

In Java, you can read and write data to a file:
— as text using FileReader and Filewriter

— as binary data using DataInputStream
connected to a FileInputStreamand as a
DataOutputStream connected to a
FileOutputStream

— as objects using an ObjectInputStream
connected to a FileInputStreamand as an
ObjectOutputStream connected to a
FileOutputStream

Students in object files

import java.io.*;
public class ObjectStudentFile {

1}

public static void main(string[] args) {
TA head= new TA("Elana M wang", 1982, 5.0, 24.0);
Student[] team= new Student[4];
team[0]= head;
team[1]= new Student("Helen Smithson", 1985, 5.0);
team[2]= new Student("Rashika Mathews", 1983, 5.0);
team[3]= new Student("Ferd Johnson", 1981, 5.0);
try {

FileOutputStream f= new FileOutputStream("studentObject.txt");

ObjectoutputStream out= new ObjectOutputStream(f);

out.writeObject(team);

out.close();

FileInputStream fin= new FileInputStream("studentobject.txt");

ObjectInputStream in= new ObjectInputStream(fin);

Student[] newTeam= (Student[]) 1in.readobject();

in.close(Q);

for (int i=0; i < newTeam.length; i++)
System.out.printin(newTeam[i]);

} catch(z0Exception e) { System.out.printin(e);

} catch(ClassNotFoundeException e) { System.out.printin(e); }

Class TA

public class TA extends Student {

private double hours;

public TA(String n, int y, double g, double h) {
super(n, y, 9);
hours= h;

1

public string tostring() {
return super.tostring() + "\t\t" + hours;

}

Object Files

Class Student must implement Serializable
— How many methods does this interface have?

— Look in Javadoc, or select from the following options (more than
one may be correct):

0 0 0 0 524

Class StudentObjectFile can read and write Student objects
without using getXXX() and setXXX() methods, even though all
Student data is private

— Does this trouble you?

— If you were a programmer on an MIT system with a Serializable
Student object, could you set your gpa to 5.0 without using
setGpa()? Could you set someone else’s to 0.7?

This is why most Java classes do NOT implement Serializable
— There are security measures you must take if you do implement it

Object Streams

* Object streams preserve object structure

— They are self-describing, which is a good thing

— Your example reads and writes two kinds of objects,
with different fields, without requiring you to know
anything about their structure

— Obiject streams are useful for communicating between
Java programs or to restore/retrieve data into a Java
program.

* They are not a common archival or data storage format

— It's easiest to store just one aggregate (array, array list,

linked list, ...) object in an object stream file

« Otherwise it’'s messy to read the correct Object type from
the file.

Exercise 3

* Write a subclass of Student, GradStudent, with
one more field: int yearsAtMIT
— The current year field in Student is year of birth
* In main():
— Create a GradStudent g, “Anthony Chung”
— Dimension team to be size 5
— Add g to the team as the fifth member
— Write and read the team as before
* Could you handle multiple object types with a
random access file?

* Could you handle multiple object types with a text
file?

Exercise 4

 Download Logger and LoggerlO

— Run Logger:

* When you click on ‘Log’, Logger writes a date/time
stamp into a Java List

» Select a format (text, data, object) and save and load
some log files.

» Try to look at these files in Notepad, etc.

— Set the type to data and open one of your text
log files. What happens?

e This is a type conversion error, very common in the
C programming language, and somewhat in C++.

< Java has sharply reduced the possibilities to do this,
except when data is stored, which is when the worst
of these mistakes occur... Oh well. It's still progress,

e But... beware of data files! They don’t have many
safeguards for correctness. Use text files for simple
things, databases for complex things, binary or
object files rarely

Exercise 4. Logger

=IDlx|

Furmm‘Data '| ‘ Log || Summarize H Iear H Save || Luad. || Quit |

6/30/32 10:42:23 PM
812136 8:50:51 AM
9124177 3:26:26 AM
617162 8:04:562 AM
3119116 2:17:04 AM
7122134 6:53:34 AM
1112181 9:34:45 PM
4126166 7:35:44 AM
4i28/57 12:52:65 AM
8i2i09 9:562:64 AM
121272 10:02:00 PM
4i29/96 12:39:26 AM
9i2i39 4:32:58 PM
10/6/55 6:00:42 AM
4i6i66 1:63:07 AM

EVENTS OUT OF ORDER! Number of events = 15

Optional Exercise 5

 If you’re done with Exercise 4:

— Download, read and run FindFolder
« Example of managing files in folders

Class FindFolder

import java.io.*;

public class FindFolder {
public static void main(string[] args) {

find(".."); // Find in parent of this directory
}
public static void find(String s) {
try {
File start = new File(s);
string[] files = start.1listQ);
for (int i = 0; i < files.length; i++) {
File f = new File(start.getPath(), files[i]);
if (f.isDirectory(Q)) {
string p = f.getPath(Q);
System.out.printin(p);
find(p);
}
}
} catch (Exception e) {
System.out.printin(e);
}
}

10

