
1

1.00 Lecture 3

Operators, Control

Reading for next time: Big Java: sections 6.1-6.4
Skip all the advanced topics, hints, etc.

Main()

•	 About main():
– In each Java program there is a just a single main()

method, no matter how many classes there are.
•	 The main() method is often in a class that has no other

methods, by convention. It can be in any class, though
some choices would seem unnatural.

–	 main() tells Java where to start the program; it’s just a
naming convention
•	 It could easily have been called “StartHere”

–	 In early examples we have only one class, so it will
seem there’s a main() method in each class. Nope.

–	 Main() at a later point will be minimalist:
•	 Main() does the least possible work to get the program

running and then hands off all the remaining work to
objects and their methods.

•	 For now, since we haven’t covered classes and objects,
we’ll do everything in main() for a little while longer.

2

Logical Operators
• Produce results of type boolean
• Comparisons use 9 operators:

Equal == Not equal !=

Less than < Less than or
equal

<=

Greater than > Greater than or
equal

>=

Logical and && Logical or ||
Not !

// Example

int c= 0, b= 3;

if (c != 0 && b/c > 5) System.out.println(“Buy this stock”);

// Short circuit evaluation: quit after answer determined

boolean buy= true;

if (!buy || c == 0) System.out.println(“Nah, don’t buy”);

Assignment Operators

• Assignment is not the same as equality
• = is not the same as ==

• Assignments are expressions:
int x, y;

x= y= 5; // Same as x = (y= 5); assoc from R to L

• Shortcut forms exist:
int x= 5, y= 3;

x += y; // Same as x= x + y;

// This means take current value of x (5), add y (3), and

// set x to a new value of 8

• Shortcut forms include +=, -=, *=, /=, %= :
x /= y; // Same as x= x / y;

x %= y; // Same as x= x % y;

• Other shortcut forms are ++ and -- :
x++; // Same as x= x + 1;

y= --x; // Same as x= x-1; y = x; (More later)

3

Operator exercise
•	 Create a new class VelocityTest

–	 Your main program will compute train velocities from
Boston to New York with various improvements

–	 On the very first line of your program write:
import javax.swing.*; // Allow GUI input

–	 Accept an int input from the user, in main():
String input= JOptionPane.showInputDialog("Enter time");

int time= Integer.parseInt(input); // Enter 4 (hrs)

–	 Define double d= 225; // miles
–	 Decrease d by 25
–	 Compute velocity v
–	 Print whether v > 60: System.out.println(logical expr);
–	 If you have time:
–	 Decrement time by 1
–	 Print whether v > 60 and d < 225
–	 Print whether v > 70 or d < 175 or time <= 3

Control Structures: Branch

General form Example

if (boolean)
statement;

if (psgrs == seats)
carFull= true;

if (psgrs >= seats) {
carFull= true;
excess= psgrs - seats; }

if (boolean) if (psgrs >= seats) {
statement1; carFull= true;

else excess= psgrs - seats; }
statement2; else

carFull= false;

if (boolean1) if (psgrs < seats)
statement1; carFull= false;

… else if (psgrs == seats) {
else if (booleanN) carFull= true;

statementN; excess= 0; }
else else {

statement; carFull= true;
excess= psgrs - seats; }

4

Control exercise
• Create a class ControlTest
• Write in main():

– Declare and initialize five double variables d, s, p, a and b
• d= 100
• s= 50
• p = 10
• a= .1
• b= .2

– Then write code so that:
• If demand d > supply s, raise price p by a(d-s)
• If demand == supply, do nothing
• If demand d < supply s, lower price p by b(d-s)

– If you have extra time, read s from a JOptionPane

Control structure: Iteration

General form Example

while (boolean) while (balance < richEnough) {
statement; years++;

balance *= (1+ interestRate);
}

do do {
statement; years++;

while (boolean); balance *= (1+ interestRate);
// Always executes stmt at least once } while (balance < richEnough)

for (start_expr; end_bool; cont_expr) for (years= 0; years< 20; years++) {
statement; balance += (1+ interestRate);

if (balance >= richEnough) break;
}

5

For loops

for (start_expr; end_bool; cont_expr) for (yrs= 0; yrs < 20; yrs++)
statement; balance *= (1 + rate);

is equivalent to:

start_expr;
while (end_bool) {

statement;
cont_expr;

}

 yrs= 0;
while (yrs < 20) {

balance *= (1+rate);
yrs++;

}

Iteration Exercises

•	 Create a class IterationTest
–	 Exercise 1: Write code in main() that prints out every

third number between 11 and 47, including 11 and 47.
–	 Exercise 2: Also print out whether each number output

is odd or even.
–	 Remember to declare the variables you use in your

loops before you loop (e.g., int i;)
•	 If you finish, look at the next example

–	 Find the bug

6

Control example

≅ 0

Yes

No

√
√) /

Print root

No

Print root
Print root2

(0)

2

discriminant < 0

Input a, b and c

discriminant = b*b - 4.0*a*c

discriminant

Yes

Print “Sorry, no real root” root = - 0.5 * b / a root = (-b + discriminant) / 2*a
root2 = (-b - discriminant 2*a

System.exit

Solve ax + bx + c= 0

Control example
import javax.swing.*; // To support simple input

public class Control { // Quadratic formula

public static void main(String[] args) {

final double TOL= 1E-15; // Constant (use ‘final’)

String input= JOptionPane.showInputDialog("Enter a");

double a= Double.parseDouble(input);

input= JOptionPane.showInputDialog("Enter b");

double b= Double.parseDouble(input);

input= JOptionPane.showInputDialog("Enter c");

double c= Double.parseDouble(input);

double discriminant= b*b - 4.0*a*c;

if (discriminant < 0)

System.out.println("Sorry, no real root");

else if (Math.abs(discriminant) <= TOL) {

double root= -0.5 * b / a;

System.out.println("Root is " + root); }

else { // Redefine ‘root’; blocks have own scopes

double root=(-b + Math.sqrt(discriminant))/ (2.0*a);

double root2=(-b- Math.sqrt(discriminant))/ (2.0*a);

System.out.println("Roots: " + root + “ , " + root2); }

System.exit(0); } }

7

Control example

•	 The previous program has a deliberate, subtle
bug
–	 Can you see it?
–	 Is it likely that you’d find it by testing?
–	 Is it likely you’d find it by using the debugger and

reading the code?
•	 Fix the error by rearranging the order of the if-

else clauses
•	 By the way, this is a terrible way to solve a

quadratic equation—see Numerical Recipes,
section 5.6

Example Method-Computing
ln(x)

•	 The natural logarithm of any number x can be
approximated by the formula

ln(x) = (x-1) – (x-1)2 /2 + (x-1)3 /3

- (x-1)4 /4 + (x-1)5 /5 + ……

•	 The next two examples show computing this
series with a for loop and a do loop
– This is also a terrible way to compute a logarithm!

8

Iteration Example 1: Ln x

import javax.swing.*;

public class Iteration {

public static void main(String[] args) {

String input= JOptionPane.showInputDialog("Enter x (0-2)");

double x= Double.parseDouble(input);

// Compute 20 terms of

// ln x= (x-1) - (x-1)^2/2 + (x-1)^3/3 - ...

final int ITERATIONS= 20; // Fixed no of iterations

double logx= 0.0;

double x1= x-1;

for (int i= 1; i <= ITERATIONS; i++) {

if (i % 2 == 0) // i even

logx -= Math.pow(x1, i)/i;

else

logx += Math.pow(x1, i)/i; }

System.out.println("Ln x= " + logx); } }

Iteration Example 2: Ln x
import javax.swing.*; // Same series as example 1

public class Iteration2 {

public static void main(String[] args) {

String input= JOptionPane.showInputDialog("Enter x (0-2)");

double x= Double.parseDouble(input);

final double TOLERANCE= 0.00001; // Tol sets no of terms

double logx= 0.0;

double x1= x-1;

int i= 1;

double term= 0.0; // Define outside do {}

do {

term= Math.pow(x1, i)/i;

if (i % 2 == 0) // i even

logx -= term;

else

logx += term;

i++;

} while (Math.abs(term) > TOLERANCE);

System.out.println("Ln x= " + logx);

System.out.println("Found in " + i + " iterations"); } }

