1.00 Lecture 17

Introduction to Swing

Reading for next time: Big Java: sections 12.1-12.6

Swing

» Package of user interface classes for windows,
menus, scroll bars, buttons, etc.

« Independent of hardware and operating system (as
long as they can paint a window)

— Swing gains independence but loses performance by not
relying on native drawing calls

— Has Windows, Mac, other look and feel options
» Supersedes Java Abstract Window Toolkit (AWT)
though it still uses many non-drawing classes from
that library. You will usually:
import java.awt.¥;
import javax.swing.¥*;

The 3 Flavors of GUI Objects

Top Level Windows: are containers that are not contained

by any other containers; they can be iconified or dragged

and interact with the native windowing system
— Example: JFrame, JDialog

Containers: some JComponents are designed to hold other

components, not to present info or interact with the user

— Examples: JPanel, JScroll1Pane

JComponents: present information or interact with the

user

— Examples: labels (JLabe1), buttons (JButton), text

fields (JTextField)
- JFrame and JDialog are not Jcomponents

Anatomy of a JFrame

Look and Feel, platfiorm
dependent

~-1a]x]

Today is Tuesday, February 26, 2002

JFrame has a contentPane,
which is the container that will
hold your content

Interacts
with the
window
system

Coordinates

/'
Screen

Measured in pixels (e.g. 640 by 480, 1024 by 768, etc.)
By tradition, upper left hand corner is origin (0,0)
X axis goes from left to right, y from top to bottom

Exercise 1: Empty JFrame

// bownload, read and run this program
import javax.swing.*;

public class SwingTest {

public static void main(string[] args) {
// Create new frame
JFrame frame= new JFrame();
// Tells program to exit when user closes this frame
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Frame has 0 default size; give it a size
frame.setSize(400, 300); // setsize(int x, int y)
// Frame invisible by default; make it visible
frame.setvisible(true);

}

// main() ends but Swing “thread” stays alive

}

// Run the program; see what it draws

Frames, Panes and Panels

paint
Component
(on panel)

or JLabel
r(on panel)

y

Text message

JFrame

Button JPanel

(on pane,
can be
many)

contentPane,

obtained from frame JButton

(on panel, can be many)

Exercise 2: Panel with Color

// bownload, read and run this program
import java.awt.¥*;
import javax.swing.*;

public class SwingTest2 {
public static void main(string args[]) {

JFrame frame = new JFrame(“welcome to 1.00");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setsize(500,500);
container contentPane= frame.getContentPane(); // No J
// We never draw on a JFrame. Instead we update
// components that are added to its contentPane
JPanel panel = new JPanel();
panel.setBackground(Color.pink);
// Add panel to the contentPane of the JFrame
contentPane.add(panel);
frame.show();

More Complex Drawing

* The JFrame in the preceding example contained a
simple, colored 3JPanel
— 13 predefined colors: Color.x where xis

orange, pink, cyan, magenta, yellow, black, blue,
white, gray, lightGray, darkGray, red, green

— You can create your own colors (see text, section 4.5)

» |f we want to accomplish more complex drawing, we
need to build new Ul components. These
components are created by extending existing Swing
classes, like 3JPanel or 3Component by:
— overriding the base class paintComponent() method and/or

— adding members (JPanel, JButton, etc.) and methods to the
base class

Frames, Panes and Panels

» Top-level window is a Java frame (JFrame)

— JFrame is container for user interface elements, primarily
panes (contentPane)

* Programs draw Ul components on panes
Container contentPane= getContentPane();
JButton gq= new JButton(“Quit”); // Buttons, text boxes, etc.
contentPane.add(q);
— To draw on a pane, use inheritance:

¢ Create a subclass of 3Jpanel or other component to do what you
want

* Redefine (override) the paintComponent method in your subclass

» paintComponent has Graphics object as argument

» Graphics object stores data on fonts and colors, and has drawing
methods that you can use

* Bring up class WelcomePanel in Eclipse:

Exercise 3: WelcomePanel

// Download welcomePanel

import java.awt.¥;

import javax.swing.*;

public class welcomePanel extends JPanel {

public void paintComponent(Graphics g) {

// Have 3JPanel paintComponent do default operations
// such as background color, etc.
super.paintComponent(g);
g.drawstring(“welcome to 1.00", 125, 150);
// The Tlast two arguments of drawString indicate
// that the message should be drawn at (x,y) =
// (125,150)

Exercise 3: Panel with Text

* Modify SwingTest2 main to use this new component.
— Change:
JPanel panel = new JPanel();
— to:
welcomePanel panel = new WelcomePanel();
— Remove:
panel.setBackground(Color.pink);
* Run SwingTest2 main again.
— This time we’'ll see a JFrame containing our new component.

Graphics

» Graphics class can draw lines, ellipses, etc.
— Very limited: single thickness, no rotation, etc.

» JavazD library is much more functional

— Uses Graphics2D, not Graphics objects
« Some casting is needed (but little thought)

— There are two versions of the Java2D library: double and

float. Use the double version:

« Rectangle2D.Double()
« Line2D.Double(), etc.
* (Remember these from inner classes?)
* You can drop the .DoubTe part sometimes; see examples

Exercise 4. Drawing

* To utilize the Graphics2D package, we’ll create a
new Ul component, CirclePanel, that uses
Graphics2D calls inits paintComponent method.

» To access the Graphics2D package, we must import
the following:

import java.awt.geom.¥;
» Bring up class CirclePanel in Eclipse:

Exercise 4: Drawing, p.2

import javax.swing.*;
import java.awt.¥;
import java.awt.geom.¥; // For 2D classes
public class CirclePanel extends JPanel {
public void paintComponent(Graphics g) {
super.paintComponent(g);
Graphics2D g2= (Graphics2D) g;
int x = 200, y = 150, w = 100, h = 100;
// Ellipse: top left corner(x,y), width = height
E1lipse2D circle= new Ellipse2D.Double(x,y,w,h);
g2.setPaint(Color.blue);
g2.draw(circle);

Exercise 4: Drawing, p.3

e Substitute circlepanel for welcomePanel in SwingTest2
main

* When you run swingTest2 main, you should see a
JFrame containing a panel that paints a blue outline of a
circle.

* Add code to circlepanel’s paintComponent method so
that it:
— Creates one E11ipse2D, Rectangle2D, and Line2D object.
— Makes a different colored object
— Makes a filled object
— Draws some text using Graphics2D.drawString

Exercise 4. Drawing, p.4

Constructor Summary: all arguments are doubles,
w is width, h is height, x,y are coordinates
corresponding to upper left corner

- new Ellipse2D.Double(x,y,w,h)

- new Rectangle.Double(x,y,w,h)

- new Line2D.Double(x1,yl,x2,y2)
Code paintComponent in stages: add one 2D object
at a time and check if it works as expected

— To change the color that objects are painted, invoke the
setPaint method on g2, your Graphics2D object. setPaint
can take a single Color argument (e.g.,Color.blue)

— To draw a ‘filled object,” invoke the fill method on g2, your
Graphics2D object. fill can take a single Ellipse2D or
Rectangle2D object as its argument.

Fonts

Standard constructor:
Font myFont =
new Font(String name, int style, int size);
Font name: safe approach is to use a logical font
name, one of
- "sansserif", "serif", "Monospaced",
"Dialog", "DialogInput", "Symbol"
Four font styles are present: Font.y where y is
- Font.PLAIN, Font.BOLD, Font.ITALIC
- Font.BOLD + Font.ITALIC
Size is point size; 12 corresponds to standard
printed text

Exercise 5: Font

// bownload the following program
import javax.swing.¥;
import java.awt.¥;
public class FontPanel extends JPanel {
private Font[] fonts= {
new Font("Monospaced", Font.PLAIN, 24) };

public void paintComponent(Graphics g) {

super.paintComponent(g);

Graphics2D g2= (Graphics2D) g;

int basey= 50;

Font f;

for (int i= 0; i < fonts.length; i++) {
f= fonts[i];
g2.setFont(f);
g2.drawstring(f.getFontName() + " " +

f.getsize(), 50, baseY);

basey += f.getsize() + 20;

Exercise 5: Font, p.2

Substitute FontpPanel for circlepanel in SwingTest2
main

When you run swingTest2 main, you should see a
JFrame containing a panel with the text
“Monospaced.plain 24"

Add 3 new Font objects to the Font[] fonts

— Do this using the Font constructor on the previous slide
with new combinations of Font names, Font styles, and
Font sizes.

10

Building with Components

« As simple as our first application is, we can build some
interesting variations with little additional code.

» JLabels can hold images as well as or instead of text.

« A contentPane has 5 zones where you can add a component.

Components are placed using the BorderLayout class

North

West Center East

South

A Simple Image Viewer, 1

import javax.swing.*;
import java.awt.¥*;
import java.net.¥*;

public class Imageview extends JFrame {
private URL source;
private String title;

public Imageview(String u, String t) {

title = t;

try {
source = new URLC u); }

catch (malformedURLException e) {
System.out.printin("Bad URL " + source);
System.exit(1);

}

11

A Simple Image Viewer, 2

// Constructor, continued (usual approach in Swing)

setDefaultCloseOperation(EXIT_ON_CLOSE);

container contentPane= getContentPane();

// Make a label of the image from the URL

ImageIcon image = new ImageIcon(source);

JLabel imageLabel = new JLabel(image,
SwingcConstants.CENTER);

contentPane.add(imageLabel, BorderLayout.CENTER);

// Make a 2nd label of the title

JLabel titleLabel = new JLabel(title,
SwingcConstants.CENTER);

contentPane.add(titleLabel, BorderLayout.SOUTH);
pack();

A Simple Image Viewer, 3

public static void main(string [] args) {
String url = "server";

String title = "The New Stata Center";

Imageview view = new Imageview(url, title);
view.show();

12

