
1.00 Lecture 15 

Interfaces 

Reading for next time: Big Java: sections 14.1-14.6, review 9.3 

Interfaces 

•	 Interface is a specification for a set of methods a 
class must implement 
–	 Interfaces specify but do not implement methods 
–	 A class that implements the interface must implement 

all its methods 
–	 You may then invoke methods on this class that rely on 

the interface. Examples: 
•	 If your class implements a Printable interface that has a 

printData() method, you can put objects of your class into 
arrays or ArrayLists and call that method 

•	 You will use interfaces frequently in Swing (GUI) and 
numerical methods 

1 



Interfaces, p.2 

•	 Interfaces are like an abstract class but: 
–	 If they were implemented as an abstract class, a subclass 

could only inherit from one superclass 
–	 Multiple interfaces can be inherited (e.g., Drawable and 

Rotatable) in your class 
–	 Interfaces cannot be instantiated 

DrawableDrawableDrawableDrawable shape1= newshape1= newshape1= newshape1= new DrawableDrawableDrawableDrawable();();();(); // Error// Error// Error// Error

–	 You can declare objects to be of type interface 
DrawableDrawableDrawableDrawable shape1;	shape1;shape1;shape1; // OK// OK// OK// OK

–	 They can be names for objects of a class that implements the 
interface. Assume Rectangle implements Drawable: 
DrawableDrawableDrawableDrawable shape1= new Rectangle();shape1= new Rectangle();shape1= new Rectangle();shape1= new Rectangle(); // OK// OK// OK// OK

–	 Interfaces may contain methods and constants 
public interfacepublic interfacepublic interfacepublic interface RotatableRotatableRotatableRotatable {{{{

void rotate(double theta);void rotate(double theta);void rotate(double theta);void rotate(double theta); // Required method(s)// Required method(s)// Required method(s)// Required method(s)

double MAX_ROTATE= 360; }double MAX_ROTATE= 360; }double MAX_ROTATE= 360; }double MAX_ROTATE= 360; } // Implicitly final// Implicitly final// Implicitly final// Implicitly final

// Methods and fields default to be public// Methods and fields default to be public// Methods and fields default to be public// Methods and fields default to be public

Interfaces and multiple

inheritance


EngrComponent 

PipeBeam PipeFlow 

Assume we have an engineering analysis system that does 
materials, thermo, fluids, etc. on many components 

2 



Interfaces and multiple

inheritance


EngrComponent 

PipeBeam PipeFlow 

ID 
Name 
Type 

Interfaces and multiple 
inheritance 

ID 

EngrComponent 

PipeBeam PipeFlow 

ID 
Name 
Type 

ID 
Name Name 
Type Type 
Length Length 
E Roughness 
I Velocity 

We now want a component that is a pipe with flow and is a circular beam. 
We want to get its heat transfer rate through the fluid and metal (e.g. to 
cool an ice rink) and its material strength. We want multiple inheritance 
from PipeFlow (heat transfer methods) and PipeBeam (materials methods) 

3 



Interfaces and multiple

inheritance


E 
I 

EngrComponent 

PipeBeam PipeFlow 

ID 
Name 
Type 

ID 
Name 
Type 
Length 

ID 
Name 
Type 
Length 
Roughness 
Velocity 

HeatPipe 

What member data fields will HeatPipe have (in C++)? 

Interfaces and multiple

inheritance


ID 

EngrComponent 

PipeBeam PipeFlow 

ID 
Name 
Type 

HeatPipe 

ID 
Name 
Type 
Length 

ID

Name
 Name

Type
 Type 
Length Length

E
 Roughness 
I Velocity 

ID

Name

Type

Length

E Roughness HeatPipe has 12 fields,

I Velocity with 2 copies of many!


4 



Interfaces and multiple 
inheritance 

•	 So, fields in classes with multiple inheritance are 
a bad idea 
–	 Java implements multiple inheritance with interfaces, a 

very restricted abstract class, to avoid this difficulty 
–	 Java allows no instance fields in interfaces, only final 

(constant) fields that don’t have this difficulty 

•	 Now, let’s look at methods… 
–	 What if interfaces allowed non-abstract methods 

(methods with bodies)? 

Interfaces and multiple 
inheritance, part 2 

ID We now make PipeFlow 
Name 
Type 
Length 
E 
I 

ID 
Name 
Type 
Length 
E Roughness 
I Velocity 

EngrComponent 

PipeBeam PipeFlow 

ID 
Name 
Type 

HeatPipe 

an interface 

HeatPipe fields: 

5 



Interfaces and multiple

inheritance, part 2


EngrComponent 

PipeBeam PipeFlow 

HeatPipe 

heatRate() heatRate() 

Which heatRate() is invoked by heatRate() or super.heatRate() in HeatPipe? 

Interfaces and multiple 
inheritance, part 2 

•	 So, non-abstract methods in classes with multiple inheritance 
are a bad idea 
–	 Java implements multiple inheritance with interfaces, a very 

restricted abstract class, to avoid this difficulty (Yes, we’re 
repeating ourselves…) 

–	 Java allows no method bodies in interfaces, only abstract methods 
that don’t have this difficulty 

–	 This forces you to implement the method in the subclass, so there 
is no ambiguity when the method is called 

•	 Interfaces are Java’s way of letting a class be two or more 
‘types’ or things, which is multiple inheritance 
–	 Interfaces are very restricted compared to full multiple inheritance, 

but they are much safer and easier to understand. And they’re 
useful enough to be worth it, even though they don’t allow as much 
reuse as we’d like 

–	 Even if you implement an interface twice by accident in a set of 
subclasses, it’s still unambiguous (and this happens!) 

6 



Interface exercise 

• Write an interface 
– In Eclipse: File->New->Interface 
– Call it Printable 
– Define one method, printData() 

• Save Printable 
• Write a Student1 class (File->New->Class, as usual) 

– Private data: String name, int year 
– Write a constructor 
– Implement Printable 

• Use ‘implements Printable’ in class declaration 
• Write a printData() method. Eclipse will try to help you! 

• Save/compile Student1 

Interface exercise, p.2 
• Write a bogus class: 

public class Bogus implements Printable {public class Bogus implements Printable {public class Bogus implements Printable {public class Bogus implements Printable {

public voidpublic voidpublic voidpublic void printDataprintDataprintDataprintData() {() {() {() {

System.out.println(“BogusSystem.out.println(“BogusSystem.out.println(“BogusSystem.out.println(“Bogus");");");");

}}}} // Java will write a constructor automatically// Java will write a constructor automatically// Java will write a constructor automatically// Java will write a constructor automatically

}}}} // for any class; nothing to do with interfaces// for any class; nothing to do with interfaces// for any class; nothing to do with interfaces// for any class; nothing to do with interfaces

• Write an InterfaceTest class, with just a main method: 
– import java.util.*;import java.util.*;import java.util.*;import java.util.*; at line 1 to be able to use ArrayLists 
– Create two new Student1s and a new Bogus 
– Create an ArrayList (remember ArrayLists?) 

• ArrayListArrayListArrayListArrayList arrarrarrarr= new= new= new= new ArrayListArrayListArrayListArrayList();();();();

– Add the two Student1s and one Bogus to the ArrayList 
• arr.add(sarr.add(sarr.add(sarr.add(s););););

– Loop through the ArrayList and invoke printDataprintDataprintDataprintData()()()() on each element 
• Guaranteed to be there because Printable implemented 
• Remember arr.sizearr.sizearr.sizearr.size()()()() gives ArrayList size 
• arr.get(iarr.get(iarr.get(iarr.get(i)))) gives ObjectObjectObjectObject at slot i 
• Must cast ObjectObjectObjectObject to PrintablePrintablePrintablePrintable as you get it from the ArrayList 

7 



Inheritance- key points 
•	 Inheritance allows a programmer to extend 

objects that she did not write 
–	 Access restrictions still hold for the super class 

•	 If the base class changes private data or members, the sub 
classes should be unaffected 

–	 Protected members in super class allow direct access 
by sub classes 

•	 Must not change in super class; must be designed with 
intent to allow use by sub classes 

–	 Sub class has all data (private, protected and public) of 
the super class. Each object has all this data. 

•	 Sub class can use only public and protected methods and 
data of the super class, not private methods or data 

– All Java objects inherit implicitly from class Object 
•	 Java libraries, Java documentation use Object frequently 

•	 Interfaces are like an abstract base class, but 
allow classes to inherit more than one interface 
– Restricted form of multiple inheritance allowed in Java 

Inheritance review questions 

1.	 What is the difference between an abstract class 
and an interface? 
• When do you use an interface? An abstract class? 

2.	 Why does Java not support multiple inheritance? 
3.	 Can an object be of more than one data type? 

•	 If so, give an example. 

4.	 What is polymorphism? 
5.	 What is the base class for all Java classes? 
6.	 Can an abstract class also be defined as final? 

•	 Try it! 

8 


