1.00 Lecture 14

Inheritance, part 2

Reading for next time: Big Java: sections 9.1-9.4

Exercise: Plants

e Create a base class p1ant:
— Private data genus, species, isAnnual
— Write the constructor
e Create a derived class Tree:
— Class declaration extends
— Private data crownsize, trunksize
— Write the constructor

Exercise

class Plant {

public Plant() {

}
}

class Tree extends

{

public Tree() {

Plant Exercise, p.2

* Create a derived class Flower
— Class declaration extends
— Private data blossomColor
— Write constructor
* Create a derived class Rose
— Class declaration extends
— Private data thornDensity
— Write constructor
e Create a derived class pine
— Class declaration extends
— Private data needleType, coneType
— Write constructor

Exercise

class Flower extends {

public Flower() {

}
}

class Rose extends {

public Rose() {

}
}

class Pine extends

{

public Rose() {

11

Exercise, p.3

 Write a class plantTest

— It has just amain() method, which:
« Creates a Plant, Tree, Flower, Rose, Pine
« Genus and species examples:
— Pinus contorta
Rosa villosa
Quercus alba (white oak)
Narcissus jonquilla (daffodil)
Prenanthes boottii (Boott’s rattlesnake root)
« Pick other data as you wish

— Step through the debugger to see how the
constructors are called

Constructors

* Sub class invokes constructors of super class

— Constructors invoked in order of inheritance
public class Base{
public Base() {
System.out.printin("Base"); } 1}
public class Derived extends Base {
public perived() {
System.out.printin("Derived"); } 1}

public class Constructorl {
public static void main(string[] args) {

Output:
Base Default constructor invoked unless
Derived another constructor explicitly called.

Some constructor must be invoked.

Abstract classes

» Classes can be very general at the top of a class
hierarchy.

— For example, MIT could have a class Person, from
which EmpTloyees, Students, visitors, etc. inherit

— Person is too abstract a class for MIT to ever use in a
computer system but it can hold name, address,
status, etc. that is in common to all the subclasses

— We can make Person an abstract class: Person objects
cannot be created, but subclass objects, such as
Student, can be

* Classes can be concrete or abstract

Abstract classes, p.2

* Another example (leading to graphics in the next
lectures)
- Shape class in a graphics system
- Shapes are too general to draw; we only know how to
draw specific shapes like circles or rectangles

- Shape abstract class can define a common set of
methods that all shapes must implement, so the
graphics system can count on certain things being
available in every concrete class

- Shape abstract class can implement some methods that
every subclass must use, for consistency: e.g.,
objectlID, objectType

Shape class

public abstract class Shape {
public abstract void draw();
// Drawing function must be implemented in each
// derived class but no default is possible: abstract

public void error(String message) { .. }
// Error function must be implemented in each derived
// class and a default is available: non-abstract method

public final int objectip() { .. }

// Object ID function: each derived class must have one
// and must use this implementation: final method

w};

public class Square extends Shape {..};
public class Circle extends shape {..};

Abstract method

« Shapeis an abstract class (keyword)
— No objects of type Shape can be created
« Shape has an abstract method draw()

— draw() must be redeclared by any concrete (non-
abstract) class that inherits it

— There is no definition of draw() in Shape

— This says that all Shapes must be drawable, but the
Shape class has no idea of how to draw specific shapes

Non-abstract method

» Shape has a non-abstract method error()
— Each derived class may handle errors as it wishes:

It may define its own error method using this signature
(method arguments/return value)

« It may use the super class implementation as a default
— If it overrides the superclass method, it must have exactly
the same signature as the superclass method

 If you write a method with same name but different arguments
or return type, it’s considered a new method in the subclass

* This is an easy mistake to make. Be careful.
— This can be dangerous: if new derived classes are added
and programmers fail to redefine non-abstract methods, the
default will be invoked but may do the wrong thing

* E.g. kangaroos

Final method

» Shape has a final method objectID
— Final method is invariant across derived classes
— Behavior is not supposed to change, no matter how
specialized the derived class becomes
» Super classes should have a mix of methods

— Don’t make all abstract super class methods abstract. Take
a stand!

An aside: final classes

e To prevent someone from inheriting from your class, declare it
final:
public final class Grad extends Student { ..
* This would not allow SpecGrad to be built
» Class can have abstract, final or no keyword

Exercise

* Write an abstract Person class
— Protected variables name, age, address, ID

— Private static variable nextID
e |nitialize itto 1

— Write constructor w/name, age, address args
— Write abstract printData() method

— Write non-abstract error() method
e Prints “error” if age<0, or name or address is null

— Write final method getID()

Exercise, p.2

» Write a concrete Student class
— Extends Person

Has additional private variable: year (undergrad year 1-4)
Write constructor
Write printData() method

* Must have same signature as base class’
Write error() method

» Also write error message if year<l1 or year>4
Try to write a getID() method

* What happens?

Exercise, p.3

* Write a class AbstractTest

— Has only a main() method, which:
« Tries to create a Person object
— What happens?
» Creates and prints data for a valid Student
« Creates an invalid Student with negative age, null address
and year=5
» Calls error method
— Where should error() really be called?

* Go back to Person and make name private rather
than protected
— What happens?

— What would you need to add to Person if name were
private?

Fun with animals

class Bird {
public void fly(Q; // Birds can fly
- 13

class Penguin extends Bird { // Penguins are birds

- }3

// Problems:
// If superclass fly() is final, Penguins must fly

// If superclass fly() is abstract or non-abstract,
// Penguin’s fly() can print an error, etc. It’s clumsy

// With inheritance, every subclass has every method and
// data field in the superclass. You can never drop
// anything. This is a design challenge in real systems.

Possible solutions

Bird Bird
Penguin Crow FlyingBird NonFlyingBird
Crow Penguin

Decision depends on use of system:
If you’re studying beaks, difference between
flying and not flying may not matter

More issues

Quadrilateral

MoveCorner()

Rectangle
MoveCorner()

Must override the MoveCorner() method in subclasses to move
multiple corners to preserve the correct shape

10

