1.00 Lecture 13

Inheritance

Reading for next time: Big Java: sections 11.5-11.6

Inheritance

* Inheritance allows you to write new classes
based on existing (super) classes
— Inherit super class methods and data
— Add new methods and data

e This allows substantial reuse of Java code

— When extending software, we often write new code that
invokes old code (libraries, etc.)

— We sometimes need to have old code invoke new code
(even code that wasn’t imagined when the old code was
written), without changing (or even having) the old code!

* E.g. A drawing program must manage a new shape
— Inheritance allows us to do this!




Access for inheritance

* Class may contain members (methods or data) of
type:
— Private:
» Access only by class’s methods
— Protected (rarely used in Java,; it’s pretty unsafe)
» Access by:
— Class’s methods
— Methods of inherited classes, called subclasses
— Classes in same package [this is a problem in my view]
— Package:
» Access by methods of classes in same package
— Public:
» Access to all classes everywhere

A Programming Project

» Department has system with Student class

— Has extensive data (name, ID, courses, year, ...) for all
students that you need to use/display

— Dept wants to manage research projects better
» Undergrads and grads have very different roles
— Positions, credit/grading, pay, ...
— You want to reuse the Student class but need to add very
different data and methods by grad/undergrad

* Suppose Student was written 5 years ago by someone else
without any knowledge that it might be used to manage
research projects




Classes and Objects

Encapsulation Message passing “Main event loop”
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Inheritance, p.2

Class Grad

gradSalary

printData‘
getPay

Exercise: Student class

 Write a Student class as a base class:
— Two private variables: first name, last name
— Constructor with two arguments
— Void method printData() to print the first + last name:




Exercise: Undergrad class

 Write an undergrad class as a derived class:
— Class declaration extends Student
— Add private variables underwage and underHours
— Constructor: How many arguments does it
have?
* Invokes superclass constructor: super(arguments)
e Sets the two new private variables

— Method getPay() returns double underWage *
underHours

— Method printbata() prints name and pay (void)

» Use superclass printData() method to print name:
super.printbData();

Exercise: Grad class

 Write a 6rad class as a derived class:
— Class declaration ‘extends Student’
— Add private variable gradsalary

— Constructor: How many arguments does it
have?
* Invokes superclass constructor: super(arguments)
e Sets the new private variable
— Method getPay() returns double gradSalary

— Method printbData() prints name and pay (void)
* Use superclass printData() method to print name




Exercise: Special Grad class

o Write a specialGrad class as a derived class
of Grad:
— Class declaration ‘extends
— Add private variable specStipend

— Constructor: How many arguments does it
have?
* Invokes superclass constructor: super(arguments)
» Sets the new private variable
— Method getPay() returns double specStipend
— Method printbData() prints name and pay (void)
* Use superclass printData() method to print name

Exercise: main()

e Download class studentTest

— It has only a main() method, which:
» Creates Undergrad Ferd at $12/hr for 8 hrs
e Prints Ferd’s data
e Creates Grad Ann at $1500/month
* Prints Ann’s data
» Creates SpecialGrad Mary at $2000/term
* Prints Mary’s data
» Creates an array of 3 Students
» Sets array elements to Ferd, Ann, Mary

* Loops through the array and uses PrintData() on each
Student object in the array to show their data.

— What happens in the loop? Did you expect it?




Solution: Main method

public class StudentTest {

public static void main(String[] args) {
Undergrad Ferd= new Undergrad(*'Ferd", *"Smith", 12.00, 8.0);
Ferd.printData();
Grad Ann= new Grad("Ann", "Brown", 1500.00);
Ann.printData(Q);
SpecGrad Mary= new SpecGrad(*'Mary', "Barrett'™, 2000.00);
Mary._printData();
System.out.printin(Q);

// Polymorphism, or late binding
Student[] team= new Student[3];
team[0]= Ferd;

team[1]= Ann; Java knows the
team[2]= Mary; object type and
for (int i=0; i < 3; i++) Chooses the
team[i].printbata(); appropriate method
¥ ¥ at run time
Output from main method
Ferd Smith
Weekly pay: $96.0
Ann Brown

Monthly salary: $1500.0
Mary Barrett

Monthly salary: $0.0
Semester stipend: $2000.0

Note that we could not write:
team[i].getPay();
because getPay() is not a method of the
superclass Student. In contrast, printData() is a method
of Student, so Java can find the appropriate version.

We’d have similar problems with a method like isUROP that
would only be defined for undergrads and not in Student




Optional exercise

e |In class Grad:;

— Change printData() to use getPay() instead of
explicitly printing gradSalary

— Save/compile and run StudentTest
— What happens?

— Why?




