1.00 Lecture 13

Inheritance

Reading for next time: Big Java: sections 11.5-11.6

Inheritance

* Inheritance allows you to write new classes
based on existing (super) classes
— Inherit super class methods and data
— Add new methods and data

e This allows substantial reuse of Java code

— When extending software, we often write new code that
invokes old code (libraries, etc.)

— We sometimes need to have old code invoke new code
(even code that wasn’t imagined when the old code was
written), without changing (or even having) the old code!

* E.g. A drawing program must manage a new shape
— Inheritance allows us to do this!

Access for inheritance

* Class may contain members (methods or data) of
type:
— Private:
» Access only by class’s methods
— Protected (rarely used in Java,; it’s pretty unsafe)
» Access by:
— Class’s methods
— Methods of inherited classes, called subclasses
— Classes in same package [this is a problem in my view]
— Package:
» Access by methods of classes in same package
— Public:
» Access to all classes everywhere

A Programming Project

» Department has system with Student class

— Has extensive data (name, ID, courses, year, ...) for all
students that you need to use/display

— Dept wants to manage research projects better
» Undergrads and grads have very different roles
— Positions, credit/grading, pay, ...
— You want to reuse the Student class but need to add very
different data and methods by grad/undergrad

* Suppose Student was written 5 years ago by someone else
without any knowledge that it might be used to manage
research projects

Classes and Objects

Encapsulation Message passing “Main event loop”

Student

b\intData public .. main(.){
Student S1(*Jo”,“Wang”, 2);

private: Request(args
astName
firstName

dept

name= Sl.getName();
// Gets S1 name

Response(ret val

}

Inheritance

ass Stude

iTstName pr\thata
lastName
gep

Already written:

gradSalary

UnderWage

JaderHou printData
printData

\ / getPay
getPay

You next write;

Inheritance, p.2

Class Grad

gradSalary

printData‘
getPay

Exercise: Student class

 Write a Student class as a base class:
— Two private variables: first name, last name
— Constructor with two arguments
— Void method printData() to print the first + last name:

Exercise: Undergrad class

 Write an undergrad class as a derived class:
— Class declaration extends Student
— Add private variables underwage and underHours
— Constructor: How many arguments does it
have?
* Invokes superclass constructor: super(arguments)
e Sets the two new private variables

— Method getPay() returns double underWage *
underHours

— Method printbata() prints name and pay (void)

» Use superclass printData() method to print name:
super.printbData();

Exercise: Grad class

 Write a 6rad class as a derived class:
— Class declaration ‘extends Student’
— Add private variable gradsalary

— Constructor: How many arguments does it
have?
* Invokes superclass constructor: super(arguments)
e Sets the new private variable
— Method getPay() returns double gradSalary

— Method printbData() prints name and pay (void)
* Use superclass printData() method to print name

Exercise: Special Grad class

o Write a specialGrad class as a derived class
of Grad:
— Class declaration ‘extends
— Add private variable specStipend

— Constructor: How many arguments does it
have?
* Invokes superclass constructor: super(arguments)
» Sets the new private variable
— Method getPay() returns double specStipend
— Method printbData() prints name and pay (void)
* Use superclass printData() method to print name

Exercise: main()

e Download class studentTest

— It has only a main() method, which:
» Creates Undergrad Ferd at $12/hr for 8 hrs
e Prints Ferd’s data
e Creates Grad Ann at $1500/month
* Prints Ann’s data
» Creates SpecialGrad Mary at $2000/term
* Prints Mary’s data
» Creates an array of 3 Students
» Sets array elements to Ferd, Ann, Mary

* Loops through the array and uses PrintData() on each
Student object in the array to show their data.

— What happens in the loop? Did you expect it?

Solution: Main method

public class StudentTest {

public static void main(String[] args) {
Undergrad Ferd= new Undergrad(*'Ferd", *"Smith", 12.00, 8.0);
Ferd.printData();
Grad Ann= new Grad("Ann", "Brown", 1500.00);
Ann.printData(Q);
SpecGrad Mary= new SpecGrad(*'Mary', "Barrett'™, 2000.00);
Mary._printData();
System.out.printin(Q);

// Polymorphism, or late binding
Student[] team= new Student[3];
team[0]= Ferd;

team[1]= Ann; Java knows the
team[2]= Mary; object type and
for (int i=0; i < 3; i++) Chooses the
team[i].printbata(); appropriate method
¥ ¥ at run time
Output from main method
Ferd Smith
Weekly pay: $96.0
Ann Brown

Monthly salary: $1500.0
Mary Barrett

Monthly salary: $0.0
Semester stipend: $2000.0

Note that we could not write:
team[i].getPay();
because getPay() is not a method of the
superclass Student. In contrast, printData() is a method
of Student, so Java can find the appropriate version.

We’d have similar problems with a method like isUROP that
would only be defined for undergrads and not in Student

Optional exercise

e |In class Grad:;

— Change printData() to use getPay() instead of
explicitly printing gradSalary

— Save/compile and run StudentTest
— What happens?

— Why?

