1.00 Lecture 12

Recursion

Reading for next time: Big Java: sections 11.1-11.4

Recursion

* Recursion is a divide-and-conquer (or divide-and-
combine) approach to solving problems:

method Recurse(Arguments)
if (SmallEnough(Arguments)) /| Termination
return Answer

+ If you can write a problem as the combination of
smaller problems, you can implement it as a
recursive algorithm in Java

Finding maximum of array

Assume we can only find max of 2 numbers at a time. Suppose
we want to find the max of a set of numbers, say 8 of them.

35 74 32 92 53 28 50 62
Our recursive max method calls itself:

max(0,7)_ . _._ v 92
4
max(0,3) 92 62 max(4,7)

A A _______ = m it A *
max(0,1): . max(2,3) max(4,5) \ max(6,7)
/ N . | | . 4 ‘\

s AR R .
74, 92 53 - v 62

Code for maximum method

public class MaxRecurse {
public static void main(string[] args) {
int[] Apata= {35, 74, 32, 92, 53, 28, 50, 62};
System.out.printin("Max: " + maxArray(0, 7, AData));
}

public static int combine(int a, int b) {
if (a >= b) return a;
else return b;

}

public static int maxArray(int i, int j, int[] Arr) {
if(@G-1)<=21 { // small enough
if (Arr[j] >= Arr[i])
return Arr[jl;
else
return Arr[i]; }

Maximum code with more output

public class MaxRecurse2 {
public static void main(String[] args) {
int[] Apata= {35, 74, 32, 92, 53, 28, 50, 62};
System.out.printin("Main Max:" + maxArray(0, 7, AData)); }
public static int combine(int a, int b) {
if (a>=b) return a;
else return b; }
public static int maxArray(int i, int j, int[] Arr) {

system.out.printIn("Max(" + i + "," + j + ")");
if (@G -1)<=D{
if (Arr[j] >= Arr[i]) { // small enough
system.out.printin(" " + Arr[j]);
return Arr[jl; }
else {
System.out.printin(" " + Arr[il);

return Arr[il; } }

Exponentiation

+ Exponentiation, done ‘simply’, is inefficient
— Raising x to y power can take y multiplications:
e Eg, X" =X "X *X*X*X*X*X
— Successive squaring is much more efficient, but requires
some care in its implementation
— For example: x%=((((x * x * x)?) 2) 2) 2uses 6 multiplications
instead of 48
* Informally, simple exponentiation is O(n)
— Squaring is O(Ig n), because raising a number to the nt"
power take about Ig n operations (base 2)
» Lg(48)= Log,(48)= about 6
. 25=132;26=64
— To find x1000,000,000 'squaring takes 30 operations while the
simple method takes 1,000,000,000!

Exponentiation cont.

+ Odd exponents take a little more effort:

— X"=x * (x*x*x)2uses 4 operations instead of 7

— x%=x * (x*x)?)?uses 4 operations instead of 9
+ We can generalize these observations and design
an algorithm that uses squaring to exponentiate
quickly
Writing this with iteration and keeping track of odd
and even exponents can be tricky
It is most naturally written as a recursive algorithm

— We write a series of 3 identities and then implement them
as a Java function!

Exponentiation, cont.

* Three identities:
- x'=x (small enough)
— X2n= xn * xn (reduces problem)
— X2n+1= x* x2n (reduces problem)

Exercise

» Write pseudocode for exponentiation

— Write your pseudocode on paper or Eclipse
— Use the standard pattern:

— You can write the identities as expressions; you don’t have
to use a ‘Combine’ method
+ ‘Combine’ is usually just * or + or Math.max()...

method Recurse(Arguments)
if (SmallEnough(Arguments)) // Termination
return Answer

How the recursion works

x=5,y=9
ExpResult(5, 9) /‘
5 * ExpResult (5, 8) = 1953125
square(ExpResult(5, 4)) = 390625
square(ExpResult(5, 2)) /: 625/‘

square(ExpResult(5, 1)) 25

;

ExpResult(5, 1) =5

Exponentiation Exercise

// Download Exponentiation class and complete it
import javax.swing.¥;

public class Exponentiation {
public static void main(string[] args) {
int z;
String input= JOptionPane.showInputDialog("Enter x");
int x= Integer.parseInt(input);
input= JOptionPane.showInputDialog("Enter y");
int y= Integer.parseInt(input);
z= expResult(x, y);
System.out.println(x + " to " + y + " power is: " + z);

}

// You can use BigInteger to handle large numbers. A bit clumsy.

Exponentiation Exercise, p.2

public static int expResult(int x, int y) {
int result;

// Write code when y is small enough

// Add System.out.println as desired to trace results

return result;

}

Recursion and iteration

It’s a tricky exercise to write the exponentiation iteratively
— Try it if you have time and are interested!

It’s often easier to see a correct recursive implementation
— Recursion is often closer to the underlying mathematics

There is a mechanical means to convert recursion to
iteration, used by compilers and algorithm designers. It’s
complex, and is used to improve efficiency.

— Overhead of method calls is noticeable, and converting
recursion to iteration within a method speeds up execution

— Small or infrequently used methods can be left as recursive

Exercise 1

+ An example sequence is defined as:
- =0
- qh=(1+4q,,)"
+ Write a recursive method to compute q,
+ Download Sequence1i (or type it from next page)

— Main is written for you
» Write method () in class Sequence1l. () is a method in
Sequencel, just like main()

— The recursive method ‘signature’ is written also
— The body of the recursive method follows the template:
+ If small enough, determine value directly

— Use Math.pow(base, exponent) to take the cube root
* Remember to make the exponent 1.0/3.0, not 1/3

» Save/compile and run or debug it
— Try n=10, or n=20

Download Code 1
import javax.swing.*;

public class Sequencel {

public static void main(string[] args) {
String input= JOptionPane.showInputDialog("Enter n");
int n= Integer.parseInt(input);
double lastTerm= q(n);
System.out.printin("Last term: "+ lastTerm);

}

public static double q(int n) {
// Write your code here
// Put in System.out.printins when you return values

}

// Sample output:

n: 0 answer: 0.0

n: 1 answer: 1.0

n: 2 answer: 1.2599210498948732
n: 3 answer: 1.3122938366832888

Exercise 2

A second sequence is defined as:

- qy=1
- g,=0,3+9q,, forn>=3

Write a recursive method to compute q,,

Download Sequence2 (or type it from next page)
— Main is written for you

» Write method () in class Sequence2. () is a method in
Sequence2, just like main()

— The recursive method ‘signature’ is written also
— The body of the recursive method follows the template:
+ If small enough, determine value directly

Save/compile and run or debug it
— Try n=10, or n= 20

Download Code 2

import javax.swing.¥*;

public class Sequence2 {
public static void main(string[] args) {
String input= JOptionPane.showInputDialog("Enter n");
int n= Integer.parseInt(input);
for (int i= 0; 1 < n; i++) // call it for all i<=n

System.out.printin("i: "+ i + " gq: " + q@i));
}
public static int qCint n) {
// Write your code here
}
}
// Sample solution
i:0qg: 0
i:1qg: 0
it 2qg:1
i:3qg: 0
i 4qg: 1
Exercise 3
+ A pair of sequences is defined as:
- Xp= 1; Xn=Xn2+ Yo
~Y0=2, Ya=Xpz" Yo+ 2 (Note the *, not +)

Write two recursive methods to compute x,and y,,
— Subscripts n/2 and n/3 use integer division

Download Sequence3 (or type it from next page)
— Main is written for you

» Methods x() and y() are methods in class Sequence3, just
like main().

— The bodies of the recursive methods follow the template:
« If small enough, determine value directly

Save/compile and run or debug it
— Tryn=10,0r n=20

Download Code 3
import javax.swing.*;

public class Sequence3 {
public static void main(string[] args) {
String input= JOptionPane.showInputDialog("Enter n");
int n= Integer.parseInt(input);
System.out.printin("i x y");
for (int i= 1; 1 <= n; i++)
System.out.printin(i +

+ x@) + " "+ y(i));
}
// Write your methods for x(i) and y(i) here

}
// Sample solution

NNRER O MK

O O N V1w X
(=22

i
1
2
3
4
5

10

