1.00 Lecture 10

Static Methods and Data

Reading for next time: Big Java: sections 13.1-13.7

Static Class Methods, Data

+ Static data fields:
— Only one instance of data item for entire class
* Not one per object
— “Static” is a historic keyword from C and C++
— “Class data fields” is a better term
* These are the alternative to “instance data fields” (which are a
field in each object)
+ Static methods:
— Do not operate on objects and do not use any specific
object
— Have access only to static data fields of class
» Cannot access instance fields in objects
* You can pass arguments to static methods, as with all methods
— “Class methods” is a better term

» These are the alternative to “instance methods” (that operate
on an object)

When to Use Static Data

Variables of which there is only one for a class

— For example, the next ID humber available for all MIT students
(assuming they are issued sequentially). In a Student class:

private static int nextID=1l; // 1 value per class

private int ID; // 1 value per instance
public static int getID() { return nextID++;}
private String name; // 1 value per instance

Constants used by a class (final keyword)

— Have one per class; don’t need one in each object
public static final int MAX_TERMS_AS_STUDENT= 16;
public static final double ABSOLUTE_ZERO= 273.0;

If ABSOLUTE_ZERO is in class Temperature, it is invoked by
double tKelvin= Temperature.ABSOLUTE_ZERO + tCelsius;

Constants are all caps by tradition (C, C++)

— Static variables in C, C++ are different than in Java

When to Use Static Methods

For methods that use only their arguments and thus
don’t need an object for member data

public static double pow(double b, double p)
// Math l1ibrary, takes b to the p power

For methods that only need static data fields
public static int getID() { return nextID++;}
// nextID is a static variable (see prev page)

Main method in the class that starts the program
— No objects exist yet for it to operate on!
All methods in C are like static Java methods, since C

has no classes/objects; C++ has both Java-like and C-
like methods

Exercise

+ We’ll experiment with whether rail locomotives
have enough power to haul a train at a given

velocity
Force Resistance: static friction, rolling friction, air
Decreases Increases with velocity
with velocity

<
<

OO OO 00 00 00 00 00 00 00 00

Locomotive force limited All cars alike (same weight)
by horsepower, adhesion

Exercise

» Declare a class Train (Eclipse: File->New->Class)
— Create one public constant: gravity g= 9.8
— You'll finish this class later
» Declare a class Engine (Eclipse: File->New->Class)
Variables
* Mass
* Power
» Coefficient of friction mu (0.3), a public constant for all engines
Constructor, as usual. How many arguments does it have?
getMass() method
getForce() method with one argument, velocity
» f1= power/velocity (limit of engine horsepower)
* f2=mass * g *mu (limit of adhesion to rail)
* Return the minimum of f1,f2 (use Math.min)

+ Save / compile

Exercise, p.2

» Write a static version of getForce() in class Engine
— Supply all needed variables as arguments
— Used by other classes that don’t want to create an Engine
object
— Method overloading:

* We can have multiple methods with the same name as long
as they take different arguments.

* We cannot have two methods that differ only in return type
» Overloading is general; it’s not related to static vs instance

Exercise, p.3

» Write class Car (Eclipse: File->New->Class)
— Two private variables:
» A single mass for all cars
» Car type (coach, snack, first-class)
— Constructor. How many arguments does it have?
— Set and get methods for the single car mass

Exercise, p. 4

Finish class Train
+ Data members:

— Gravity g (already defined)
— Constant ¢c1=0.00015 (rolling resistance)
— Constant c2= 110.0 (air resistance)

One engine (object)

Number of cars (int)

— (Which data members are static?)

Constructor
— What variables does it set?

Method getNetForce, with one argument: velocity
— Compute weight= g*(engine mass + no of cars * car mass)
— Compute net force= engine force - c1*weight*v - c2*v*v
— Return net force

Static data and methods

// In a main() method you’11 write next: 1) 50000

Car

car cl= new cCar(“coach”);
car c2= new Car(“first class”);

0 50000
coach Car

- valid method calls:
cl=| — 1 car

cl.get/setCarType() // Instance

- 0 50000
first class Car

- valid method calls:
2= — 1

c2.get/setCarType() // Instance

Exercise, p.5

» Download TrainTest and add one line to it:

public class TrainTest {
public static void main(string[] args) {

Engine r34= new Engine(90000, 5500000); // 90 tonnes, 5500 kw
double vel= 30.0; // 30 m/s, 70mph
// Instance method
double force34= r34.getForce(vel);
// Static method
double f34= Engine.getForce(vel, 90000, 5500000);

// Don't need to create Cars. All we need is their mass
// But we must set their mass: do it here

// Train

Train amtrak4l= new Train(r34, 10);

// Instance method

double force4l= amtrak4l.getNetForce(vel);
// static method (if you had time)

double f41= Train.getNetForce(vel, 10, r34);

}
}
Solution: 2 engines, 2 trains
public class TrainTest3 { // Ssolution with two trains, two engines
public static void main(string[] args) {
// Engines

Engine r34= new Engine(90000, 5500000); // 90 tonnes, 5500 kw
Engine w96= new Engine(120000, 4000000);

double vel= 30.0; // 30 m/s, 70mph

// Instance methods

double force34= r34.getForce(vel);

double force96= w96.getForce(vel);

// Static methods

double f34= Engine.getForce(vel, 90000, 5500000);

double f96= Engine.getForce(vel, 120000, 4000000);

// Ccan't and don't need to create Cars, but set their avg wgt here
Car.setAvgMass(50000) ;

// Trains

Train amtrak4l= new Train(r34, 10);

Train amtrakl71l= new Train(w96, 10);

// Instance methods

double force4l= amtrak4l.getNetForce(vel);

double forcel7l= amtrakl71.getNetForce(vel);

// Static methods

double f41l= Train.getNetForce(vel, 10, r34);

double f171= Train.getNetForce(vel, 10, w96);

Variable Lifecycles

 Instance (or object) variables
— Created when their containing object is created
— Initialized to default if not explicitly initialized
» 0 for numbers, false for boolean, null for objects
— Destroyed when Java garbage collector finds there are no
remaining active references to object
+ Static (or class) variables
— Created when class is first used in program
— Initialized to default if not explicitly initialized
» 0 for numbers, false for boolean, null to objects
— Usually exist for rest of program (unless unloaded)
» Local variables (or block variables)
— Created in the statement where they’re defined
— Not initialized by default. Contain unpredictable data
— Destroyed when block is exited (at ending brace)

