Code No: 123AN

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

Code.140. 12.	DAIN:	17, K.			R15 🟗	;···, .···.
JAWAH	ARLAL NEH	RU TECHNO	OLOGICAL III	NIVERSITY H		in in
B.Te	ech II Year I S	emester Eva	minations Nov	NIVERSITY Hember/December	YDERABAD	
	P	ROBARII IT	WAND CEAR	ember/Decembe	er - 2016	
		COMMINI	ANII			
Time: 3 Hour	S :	TO ME, CSE,	IT, MCT, AME	, MIE, MSNT)		
.				*	Max. Marks: 75	****
Note: This au	lestion nanor as	· 's 's'	} 'x, \$ <u>*</u> _\$			
Note: This qu	is commut-	miains two pa	rts A and B.			* * *xx
Dort D	is compulsory t	which carries	25 marks. Answ	er all questions i	n Part Δ	
Each qu	lestion carries	10 marks and	may have a, b, c	as sub questions	nom each unit.	
			in in	······································		
* * * * * * * * * * * * * * * * * * *	î îx *xx.*	: · · · · · · · · P	ART- A		·::	
				2 40	* * ****	17. 1
1.a) What is	the expected	number of he	eads annearing	whom - C'	(25 Marks) n is tossed three	
times?			appearing	when a fair con	n is tossed three	
b) Prove th	at the total area	under the no	rmal curve is un	:4	[2]	
c) Prove the	hat correlation	coefficient	is the similar	ity.	[3]	
coefficie	ents.		is the geometri	c mean of the	two regression	III: 173
d) Define	covariance of	two random			<u> </u>	17. 1
uncorrela	ated	two failuoili	variables. Wh	ien are two ra	ndom variables	
e) Define T	ype-I and Type	II ormana			[3]	
f) A sample	e of size 10 de	cours for a			[2]	
2.25 Is i	t remerciable to	awii irom a i	normal population	on has a mean ([2] and variance	
; 1, 1,,,,,,120, 10 1	r ricaisailtante (0	assume that t	he mean of the	on has <u>a me</u> an (popula tion is 30	? Use 1% i.os	
g) Define tra	ongiant state					* 1.*.
h) Explain the	ho are state an	d steady state	in a queue mode	el	[3]	
2. Prum u	ne operating cn	aracteristics o	f a anamain	tem.	[2]	
-/ Wille doy	wii tile Chapma	n-Kolmogoro	v equations.		[3]	
		F***:	Markov chain i	[017	[2]	
J) · · · If the tran	sition probabili	ty matrix of a	Markov ohoin			!***: :** <u>:</u> :
•		J and a d	i warkov enam i		the steady state	
distributio	un.			$\begin{bmatrix} - & - \\ 2 & 2 \end{bmatrix}$		
distributio	11.		*	_	[2]	
		PAF	RT-B		[3]	
2 97: 1: 1	:::::::::::::::::::::::::::::::::::::::	_ ; ****, ,***,	****		(50	
2.a) A random Find the pr	variable X is d	efined as the s	um on the faces	when hair of	(Su marks)	
Find the pr	obability mass	function of X	and the expecte	d value of V	nce is thrown.	
b) Explain Bi	nomial distribu	tion. Derive i	ts moment gene	d value of X . rating function a	1.1	
its mean an	nd variance.		gene.	ading function a		
2 \ 5 5		O	R		[5+5]	
3.a)Define mat b)Explain no	hematical expe	ototia. D		n 41		
b)Explain no 68.22 inch	ormal distribut	ion. If the	mean haight	on theorem of ex	pectation.	**** ***
68.22 inch	es with a vari	ance of 10.8	inches 1	or sorghum var	ieties to be	
100 varietie	es, would you e	xpect to have	6 fact talls	of sdrghum var nany varieties i	n a field of	
	, , , , , , , , , , , , , , , , , , , ,	-Poor to Have	o reet tall?		[5+5]	
	···· ₂ ,····.	2200				
13,10,1					····.	**** ***
		* ***	* * *	: 1. E. I		

6.a) b)	A cantilever beam of length 7 m, carries a point load 60 kN at a distance of 5 m from the fixed end. Find the deflection and slope under the point load and also at the free end. Take $E = 2.1 \times 10^5$ MPa and $I = 89 \times 10^6$ mm ⁴ . What are the assumptions made to find the deflections and slopes in the beam?									
7a) b)	Explain in detail. State the assumptions made in the analysis of thin cylindrical shells. A shell 5 m long, 1.4 m in diameter is subjected to an internal pressure of 1.4 MPa. If the thickness of the shell is 10 mm, find the circumferential and longitudinal stresses. Find also maximum shear stress and the changes in the dimensions of the shell. Take $E = 2.07 \times 10^5 \text{ N/mm}^2$ and Poisson's ratio = 0.3.									
8.a)	A cylindrical compre The efficiencies of and 45% respective 100 MPa, find the means of the show that the volume of the show that the show the show that the show that the show that the show the show that the show that the show the s	essed air drum the longitudinal ely. If the tens	is 2 m in diamet l (η _L) and circun ile stress in the	er with plates 12 nferential (η _c) jo plating is to b	.5 mm thick. ints are 85% be limited to	R8 PA				
::: b)	strain and twice that	of hoop strain.		PURU	· [8÷7]	i ita tarat				
		(00O00							
RØ	RÇ	RØ	RO	RO,	RØ	RE				
RØ	RO	RØ	RØ	RØ	R0	RO				
RØ	RØ	RO	RØ	RØ	RØ	RØ				
RØ	RO	RO	RO	RØ	RØ	RØ				
RØ	RØ	RØ	RØ	RØ	RØ	RØ				

: