Code No: 131AB

R16

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B.Tech I Year I Semester Examinations, December - 2016 **MATHEMATICS-II**

(Common to CE, ME, MCT, MMT, MIE, CEE, MSNT)

Time: 3 hours

Max. Marks: 75

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

(25 Marks)

- Find the Laplace transform of the function $f(t) = \begin{cases} t & 0 < t < a \\ -t + 2a & a < t < 2a \end{cases}$ Prove that $L^{-1}{F(s)} = f(t)$ and f(0) = 0 then $L^{-1}{sF(s)} = \frac{df}{dt}$. 1.a) [2]
- [3]
- c) Evaluate $\int_0^\infty a^{-bx^2} dx$. [2]
- Show that $\beta(p,q) = \beta(p+1,q) + \beta(p,q+1)$. [3]
- Find the area bounded by the curves y = x, $y = x^2$. e) [2]
- Evaluate $\int_0^a \int_0^{\sqrt{a^2-y^2}} (x^2+y^2) dy dx$ by changing into polar coordinates. [3] Find the directional derivative of $xyz^2 + xz$ at (1,1,1) in a direction of the normal to the f)
- surface $3xy^2 + y = z$ at (0,1,1).
- surface $3xy^2 + y = z$ at (0,1,1). [2] Find a unit normal vector to the surface $x^2 + y^2 + 2z^2 = 26$ at the point (2,2,3). [3] h)
- Find the work done by the force $\vec{F} = 3x^2i + (2xz y)j + zk$ along the straight line joining the points (0,0,1) and (2,1,3).
- Find the circulation of \vec{F} round the curve \vec{c} where $\vec{F} = (e^x \sin y)i + (e^x \cos y)j$ and \vec{c} is j) the rectangle whose vertices are (0,0), (1,0), $(1,\frac{\pi}{2})$, $(0,\frac{\pi}{2})$.

PART-B

Solve the differential equation $\frac{d^2x}{dt^2} - 4\frac{dx}{dt} - 12x = e^{3t}$ given that x(0) = 1 and x'(0) = -2 using Laplace transforms. [10]

- 3. Use Laplace transforms, solve $y(t) = 1 e^{-t} + \int_0^t y(t u) \sin u \, du$. [10]
- Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.
- Prove that $\Gamma(n)\Gamma(1-n) = \frac{\pi}{\sin n\pi}$. [5+5]

Code No: 131AB

R16

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B.Tech I Year I Semester Examinations, December - 2016 **MATHEMATICS-II**

(Common to CE, ME, MCT, MMT, MIE, CEE, MSNT)

Time: 3 hours

Max. Marks: 75

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

(25 Marks)

- Find the Laplace transform of the function $f(t) = \begin{cases} t & 0 < t < a \\ -t + 2a & a < t < 2a \end{cases}$ Prove that $L^{-1}{F(s)} = f(t)$ and f(0) = 0 then $L^{-1}{sF(s)} = \frac{df}{dt}$. 1.a) [2]
- [3]
- c) Evaluate $\int_0^\infty a^{-bx^2} dx$. [2]
- Show that $\beta(p,q) = \beta(p+1,q) + \beta(p,q+1)$. [3]
- Find the area bounded by the curves y = x, $y = x^2$. e) [2]
- f)
- Evaluate $\int_0^a \int_0^{\sqrt{a^2-y^2}} (x^2+y^2) dy dx$ by changing into polar coordinates. [3] Find the directional derivative of $xyz^2 + xz$ at (1,1,1) in a direction of the normal to the surface $3xy^2 + y = z$ at (0,1,1).
- Find a unit normal vector to the surface $x^2 + y^2 + 2z^2 = 26$ at the point (2,2,3). [3] h)
- Find the work done by the force $\vec{F} = 3x^2i + (2xz y)j + zk$ along the straight line joining the points (0,0,1) and (2,1,3).
- Find the circulation of \vec{F} round the curve \vec{c} where $\vec{F} = (e^x \sin y)i + (e^x \cos y)j$ and \vec{c} is j) the rectangle whose vertices are (0,0), (1,0), $\left(1,\frac{\pi}{2}\right)$, $\left(0,\frac{\pi}{2}\right)$.

PART-B

Solve the differential equation $\frac{d^2x}{dt^2} - 4\frac{dx}{dt} - 12x = e^{3t}$ given that x(0) = 1 and x'(0) = -2 using Laplace transforms. [10]

- 3. Use Laplace transforms, solve $y(t) = 1 e^{-t} + \int_0^t y(t u) \sin u \, du$.
- Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$. Prove that $\Gamma(n)\Gamma(1-n) = \frac{\pi}{\sin n\pi}$. [5+5]

5.a) Using Beta and Gamma functions, evaluate the integral $\int_{-1}^{1} (1-x^2)^n dx$ where n is a positive integer. If m and n are positive integers then prove that $B(m, n) = \frac{(m-1)!(n-1)!}{(m+n-1)!}$ [5+5]The plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ meets the axes in A, B and C. Find the volume of the 6. tetrahedron OABC. Also find its mass if the density at any point is kxyz. Change the order of integration and solve $\int_0^c \int_{x^2/a}^{2a-x} xy^2 dy dx$. 7.a)Evaluate $\iiint xyzdxdydz$ over the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$. b) [5+5]Find the directional derivative of $xyz^2 + xz$ at (1,1,1) in a direction of the normal to the 8.a) surface $3xy^2 + y = z$ at (0,1,1). Prove that curl $(\vec{a} \times \vec{b}) = \vec{a} \operatorname{div} \vec{b} - \vec{b} \operatorname{div} \vec{a} + (\vec{b} \cdot \nabla)\vec{a} - (\vec{a} \cdot \nabla)\vec{b}$ [5+5]b) Prove that if \vec{r} is the position vector of any point in space then $r^n\vec{r}$ is irrotational and is solenodial if n = -3. Verify divergence theorem for $2x^2yi - y^2j + 4xz^2k$ taken over the region of first octant 10. of the cylinder $y^2 + z^2 = 9$ and x = 2. If $\vec{f} = 3x^2yz^2\vec{i} + x^2z^2j + 2x^3yzk$. Show that $\int_C \vec{f} \cdot d\vec{r}$ is independent of the path of integration. Hence evaluate the integral when C is any path joining (0, 0, 0) to (1, 2, 3). [10] ---00O00---

	5,a) Usir posi	ng Beta and Gam tive integer.	nma functions, ev	valuate the integ	gral $\int_{-1}^{1} (1 - x^2)^n$	dx where n is a	
	b) If m	and n are positive	e integers then pr	ove that $B(m, n)$	$=\frac{(m-1)!(n-1)!}{(m+n-1)!}.$	[5+5]	
rr.					and C . Find the any point is $kxyz$.		, 224
	*, *, * * *,	\$		OR		[10]	
		nge the order of in uate $\iiint xvzdxdx$		20 April 1	$\frac{dy}{dx}$ dy $\frac{dx}{dx}$ e sphere $x^2 + y^2$	$+ z^2 = a^2$	
	georg georg	333 5	, and just			[5+5]	
	surfa	$ace 3xy^2 + y = z$	z at (0,1,1).		in a direction of	the normal to the	
	b) Prov	re that curl $(\vec{a} \times \vec{b})$	$(\vec{b}) = \vec{a} \operatorname{div} \vec{b} - \vec{b} $		$-(\vec{a}\cdot\nabla)\vec{b}$	[5+5]	
į	9. Prov	The that if \vec{r} is the modial if $\vec{n} = -3$.	position vector o	f any point in sp	pace then $r^n \vec{r}$ is in	rrotational and is	
	10. Veri of th	fy divergence the e cylinder $y^2 + z$	$x^2 = 9$ and $x = 2$.		aken over the regi	on of first octant [10]	
Ĵa L			$z^2j + 2x^3yzk. S$		$dec{r}$ is independent path joining $(0,0,$		
•	**************************************					1000 1000 1000 1000 1000 1000 1000 1000 1000 1000	
			0	0O00			
	SR	SK		88	HH.	SR.	
		SR	HR	to the second		öR	
1		SR		SR.	88	3F.	