R13

Code No: 113BU

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, December-2014 SWITCHING THEORY AND LOGIC DESIGN

(Common to ECE, EIE)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit.

Each question carries 10 marks and may have a, b, c as sub questions.

Part- A

(25 Marks)

1.a)	What do you mean by self complementing codes. Give two examples.	[2M]
b)	State and prove consensus theorem.	[3M]
c)	What is a standard POS form?	[2M]
d)	How does the look-ahead-carry adder speed up the addition process? Why	serial
	adders are slower than parallel adders?	[3M]
e)	What are preset and clear inputs?	[2M]
f)	Distinguish between combinational and sequential switching circuits.	[3M]
g)	What are the applications of counters?	[2M]
h)	What is a twisted ring counter?	[3M]
i)	What is a Mealy machine?	[2M]
j)	What is a merger graph?	[3M]

Part-B

(50 Marks)

- 2.a) What is Hamming code? How is the Hamming code word tested and corrected?
 - b) Perform the decimal addition of 679.6 + 536.8 in the 8421 code.

OF

- 3.a) Obtain the duals of the following functions:
 - i) $\overline{X}YZ + \overline{X}Y\overline{Z} + X\overline{Y}Z + X\overline{Y}Z$
 - ii) $\overline{ABC} + \overline{ABC} + A\overline{BC} + AB\overline{C}$
 - b) Realize XOR function using AOI logic and NAND logic.
- 4.a) Realize a full adder using only 2-input NAND gates.
 - b) Implement the following logic function using an 8:1 MUX. $F(x, y, z) = \sum m(0, 2, 3, 5)$

OR

- 5.a) Minimize the following multiple output functions using K-maps. $f_1 = \sum m(0, 2, 6, 10, 11, 12, 13) + d(3, 4, 5, 14, 15)$ $f_2 = \sum m(1, 2, 6, 7, 8, 13, 14, 15) + d(3, 5, 12)$.
 - b) Draw the logic diagram of a 1-line to 4-line demultiplexer and explain its working.
- 6.a) Draw the logic diagram of a master slave JK flip flop using NAND gates and explain its truth table.
 - b) Define the following terms as applied to flip flops.
 - (i) Set-up time,
- (ii) Hold time,
- (iii) Propagation delay time.

OR

- 7.a) Explain the conversion of SR flip flop to JK flip flop.
 - b) Obtain the characteristic equations of SR and JK flip flops.

3/12

- 8.a) Draw the diagram of mod-10 Asynchronous counter using T-flip flops and explain its working.
 - b) Draw the logic diagram of a 4-bit ring counter using JK flip flops and explain its working.

OR

- 9. Design a Synchronous modulo-6 gray code counter using T-flip flops.
- 10.a) What is a Merger graph?
 - b) Draw the Merger graph and obtain the set of maximal compatibles for the incompletely specified sequential machine whose state table is given in Table 1.

PS	NS, Z	
	I_1	I_2
A	E, 0	D, 1
В	F, 0	D, 0
C	E,—	В, 1
D	F, 1	В, 0
Е	C, 1	F, 1
F	D, -	C, 0

 \mathbf{OR}

- 11.a) Draw the ASM chart of a Binary multiplier.
 - b) Obtain the control subsystem of a binary multiplier using logic gates.