126

R09

Code No: 53022

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B.Tech II Year I Semester Examinations, December-2014 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (Common to CSE, IT)

Time: 3 hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

1.a) If p, q, and r are any three statements, then using the truth table prove that, $(p \land q) \lor r = (p \lor r) \land (q \lor r)$

b) Obtain the PDNF and PCNF for the following statement formula: $(P \land Q) \lor (P \land R) \lor (Q \land R)$

- 2. Show that (x) $(p(x) \rightarrow Q(x)) \land (x) (Q(x) \rightarrow R(x) (x) (P(x) \rightarrow R(x)))$ using rules of inference.
- 3.a) Draw the Hasse Diagram of {P(A), }. Where A is any set what are the greatest and least elements? Explain how to find LUB and GLB using Hasse Diagram.
- b) Let R = {(b, c), (b, e), (c, e), (d, a), (c, b), (e, c)} be a relation on the set A = {a, b, c, d, e}. Find the transitive closure of the relation R.
- Given the algebraic system $\langle N, + \rangle$ and $\langle Z_4, +_4 \rangle$, where N is the set of natural numbers and + is the addition operation on N and Z_4 denote the set of equivalence classes generated as $Z_4 = \{[0], [1], [2], [3]\}$ AND $+_4$ define an operation on Z_4 given by $[i] +_4 [j] = [(i+j) \pmod{4}]$ for all i, j = 0, 1, 2, 3. Show that there exists a homomorphism from $\langle N, + \rangle$ to $\langle Z_4, +_4 \rangle$.
- 5.a) How many permutations can be made with letters of the word ENGINEERING?
 - b) In how many ways can four students be selected out of twelve students, if
 i) two particular students are not included at all?
 - ii) two particular students are included?
- 6.a) Solve the recurrence relation $a_n 7a_{n-1} + 10a_{n-2} = 0$ where $a_0 = 10$ and $a_1 = 41$.
 - b) Find a generating function for the recurrence relation $c_n = 3c_{n-1} 2c_{n-2}$ for $n \ge 2$ given $c_1 = 5$, $c_2 = 3$.
- 7. Explain prim's and krushkal's algorithm with a suitable example.
- 8. Explain the following with suitable examples:
 - a) Hamiltonian Graph
 - b) Hamiltonian Circuit
 - c) Hamiltonian Path.