Code No: 121AL

R15

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year Examinations, August/September - 2017

MATHEMATICAL METHODS

(Common to EEE, ECE, CSE, EIE, IT, ETM)

Time: 3 hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

(25 Marks)

- Write the formula to find an interpolate value for unequally spaced data $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) .
- b) Derive the normal equations for best fit of a straight line y = a + bx. [3]
- c) Find the slope of the tangent to the curve at x = 0 which passes through the points (0,3), (2,6) and (4,8).
- d) Find an approximate value of $\sqrt{18}$ using Newton's Raphson method. [3]
- e) Find the average value of $f(x) = x^2$ in the interval $(-\pi, \pi)$ using Fourier series. [2]
- f) Find the Fourier transform of $f(x) = \begin{cases} 1, |x| \ge a \\ 0, |x| < a \end{cases}$ [3]
- g) Solve the non linear partial differential equation pq = 1. [2]
- h) Form the Partial difference equation form $z = f\left(\frac{x}{y}\right)$ by eliminating arbitrary function f.
- i) State stokes theorem. [3]
- j) Apply Gauss divergence theorem to evaluate $\iint x \, dy \, dz + y \, dz \, dx + z \, dx \, dy$ over the surface of the sphere of radius α units.

PART-B

2.a) Find the missing value from the following data

(50 Marks)

>	La, end	0	5	10	1.5	20	25
3		. 6	10	-	17	- ,	31

b) Find the best fit of the curve $y = a(b^x)$ to the following data

X	2	6	5	8
v	1	5	7	0

3.a) Find an interpolate polynomial from the following data

X	0	1	2	4
f(x)	1	1	2	5

b) The values of a function f(x) are given below for certain values of x. Find the value of f(10).

X	5	6	9	11
f(x)	12	13	14	16

[5+5]

4.a) Find a negative real root of $x^3 - x - 11$ using Iterative method correct to three decimal places.

b) Solve by Gauss-Seidel method of the system of equations:

$$10x-2y-2z=6$$
; $-x+10y-2z=7$ and $-x-y+10z=8$ [5+5]

OR

5.a) The velocity v of a particle with respect to time t as given below

t	0	10	20	30	40
v	45	60	65	54	42

Find the acceleration of a particle at the time $t = 40 \, \text{min}$.

b) Solve numerically $\frac{dy}{dx} = x - y$, y(0) = 1 for x = 0.2, 0.4 by modified Euler's method.

[5+5]

6.a) Define Fourier Series of even and odd functions on (-l, l)

b) Obtain the Fourier series expansion of f(x) = |x| in $(-\pi, \pi)$ and hence deduce that

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$
 [5+5]

OR

7.a) Let $\bar{f}_s(p)$ and $\bar{f}_c(p)$ are Fourier sine and cosine transform of f(x), prove that $F_c\{xf(x)\} = \frac{d}{dp}\bar{f}_s(p)$ and $F_s\{xf(x)\} = -\frac{d}{dp}\bar{f}_c(p)$.

b) Find the Fourier cosine transform of $f(x) = e^{-x^2}$ on $(0, \infty)$. [5+5]

8.a) Solve the partial differential equation (mz-ny)p+(nx-lz)q=ly-mx where l,m,n are constants.

b) Solve
$$(p^2 + q^2)y = qz$$
. [5+5]

OR

9.a) Solve the heat conduction equation in a thin rod: $\frac{\partial U}{\partial t} = c^2 \frac{\partial^2 U}{\partial x^2}$ by method of separation of variables.

b) Find the solution of the one dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ under the boundary conditions u(0,t) = 0, u(l,t) = 0 and u(x,0) = x, 0 < x < l, l being the length of the rod.

- 10.a) Find the Directional derivative of $\phi = x^4 + y^4 + z^4$ at the point A(1,-2,1) in the direction of AB where B is (2,6,-1).
 - b) Verify stokes theorem for a vector field defined by $\overline{F} = -y^3 \overline{i} + x^3 \overline{j}$ in the region $x^2 + y^2 \le 1$, z = 0. [5+5]

OR

- 11.a) Using Greens theorem, Evaluate $\oint_C (y \sin x) dx + \cos x dy$ where C is the triangle enclosed by the lines y = 0, $x = \frac{\pi}{2}$ and $\pi y = 2x$.
 - b) If the vector field $\overline{F} = (2xyz^2)i + (x^2z^2 + z\cos yz)\overline{j} + (2x^2yz + y\cos yz)\overline{k}$ is conservative then find its scalar potential function. [5+5]

---00O00---

8R 8R 8E 8E 6E 5