R13

Code No: 113BS

JAWAHARIAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, March - 2017

DIGITAL LOGIC DESIGN

(Computer Science and Engineering)										
Time:	3 Hours			Max.	Marks: 75					
Note:	This question paper Part A is compulsor Part B consists of Each question carrie	ry which carr f 5 Units. A	ies 25 marks. Answ Answer any one f	ull question from		EĘ				
1.a)	Solve for X in the e	quation (19.1		+ × «×«	(25 Mark s) [2]	**************************************				
b) c) d)	Demonstrate by me Implement Ex-OR v Find the min terms	with NOR ga of wxy+yz+x	tes.	the DeMorgan laws	[3] [2] [3]					
e) i:: if)i g)	Design a 4×1 multip How a decoder can What are direct input	be used like its in a flip-fl	lop and why they ar		[2] [3] [2]	X Y 6 X X 9 6 6 8 8 9 6 8 8 9 6 8 8 9 6 8 8 9 6 8 8 9 8 8 8 8				
h) i) j)	What is race around What are the differe Draw the PLA block	ent type of RO		!?	[3] [2] [3]	, 4				
**** **** ***************************		6 A 0 6	PART-B		(50 Morks)	**************************************				
2.a) b) c)	Find 9's complement Convert F(A,B,C,D) Encode the information code.	$\Pi(0,1,2,3,$	4,6,12) to the other r 01101110101 acco	canonical form.	(50 Marks) Hamming [2+4+4]	RE				
3.a) b) c)	Represent (524) ₁₀ in Simplify x+xyz+yz Draw the logic diag	x'+wx+w'x+	nd BCD Excess-3 c x,y using Boolean a	algebra.	[2+4+4]					
4(a) b)	Find F' in POS form Simplify the functio	for F(A, B, on F(A,B,C,E	C, D)= $\Pi(1, 3, 7, 12)$ O)= $\sum (0,1,3,4,6,8,15)$ OR	1, 15) +d(0, 2, 5). 5) using K-Map.	[5+5]	X P X P X P X P X P X P X P X P X P X P				
5.	Simplify the func K-Map and impleme		E'+A'B'C'D'+B'D'E		DE' using [10]					
	Design a BCD to Se	ven segment	display circuit usin	g decodér.	:[10]	* * * * * * * * * * * * * * * * * * *				
	Construct a 4-bit Rip Design a 2-bit magn				[5+5]					
**** **** **** **** **** **** ****	EE	**************************************	RE		****	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				

destini emonater da injura para para para per	**************************************	8;a) b)	What is a Master-Slave flip-flop? Explain with block diagram and logic diagram. Design a divide by 6 Ripple Counter using JK flip-flops. [5+5] OR										
den era a di diamento era a trasse semente se una diplocata esta esta del media esta del del medio esta del me	j o	9.a) b) 10.a)	What is the difference between edge triggering and level triggering? Explain about Edge triggered D flip-flop with a neat diagram. Design a BCD counter with JK flip-flops. [5+5] Given a 32×8 ROM chip with enable input, construct a 128×8 ROM with four chips and decoder.										
	' (b)	Obtain the PLA prog $F_2(x, y, z) = \sum (0, 3, 4, 5)$ Implement the following $F_1(A,B,C) = \sum (1,2,4,6)$ $F_3(A,B,C) = \sum (2,6)$	5). OR ng Boolean func F ₂ (A,B,C		****	5, 7) and [5+5]	A * V * * * * * * * * * * * * * * * * *					
100 Jan 100 Ja	00O00												
		RE	RE	RO	RD	Re	RØ	X X 4 X 4 X 5 X X 5 4 X 8 X X 5 5 X					
		RO		RE	KB	RU	RØ) () () () () () () () () () (
	iO	RE	RE	RO	RØ	RO	RO	***** * * * * * * * * * * * *					
		RO		RU	RO	RØ	Rø	Z + + + X + + + + + + + + + + + + + + +					
	10	RØ		RØ	RØ	Re	RØ	**************************************					
		****	FC	RØ	Re	RØ	RØ	+ X + X + X + X + X + X + X + X + X + X					