
Code No: R0522

ich.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year I Semester Examinations, March - 2017 DESIGN AND ANALYSIS OF ALGORITHMS

(Computer Science and Engineering)

Answer any five questions Time: 3 hours

Max. Marks: 80

All questions carry equal marks

1.a)	Write and explain the characteristics of a good algorithm. Distinguish between priori and posteriori analysis.	[8+8]	**************************************
2.a)	Explain the waiting rule for finding the union of sets and collapsing rexamples for each one.	rule. Give	,
b)	What is articulation point? How will you find it? Explain with example.	[0+0]	
3 (a) b)	Write and explain the general method for divide and conquer method. Give brief description about stressen's matrix multiplication.	* * ×	* * * * * * * * * * * * * * * * * * *
c)	Locate the element 8 from the set {2, 5, 7, 11, 13, 17} by using binary search.	[5+5+6]	
4.a)	Let us consider the following job sequencing problem with deadlines. $n = 4$, $(P_1, P_2, P_3, P_4) = (100, 10, 15, 27)$ and $(d_1, d_2, d_3, d_4) = (2, 1, 2, 1)$ feasible and optimal solution. Differentiate between Greedy method and Dynamic programming.)::Find the 	
5.a)	Explain all pairs shortest path problem with suitable example.		
b)	Describe the travelling salesman problem and present a solution to it by usin	g dynamic	
**** *** * * * * * * * * * * * * * *	programming.	[8+8]	* * * * * * * * * * * * * * * * * * * *
6.a) b) c)	Write an algorithm for m – coloring problem. Give example. List the applications of backtracking. State and explain the principle of backtracking.	[5+5+6]	
7;a) b)	Explain the principle of LIFO branch and bound. Explain the method of reduction to travelling salesperson problem using bound.	oranch and [8+8]	FR
8.a) b)	State and prove cook's theorem. Explain how P and NP problems are related?	[8+8]	FE