Code No: 53021

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B.Tech II Year I Semester Examinations, May/June - 2015 SIGNALS AND SYSTEMS

(Common to ECE, EIE, BME, ETM)

Time: 3 hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

- 1.a) Verify the following signals $\sin n\omega_0 t$ and $\sin n\omega_0 t$ are orthogonal or not over the interval $(t_0, t_0 + 2/\omega_0)$.
- b) Define the following elementary signals:
 - i) Real exponential signal.
 - ii) Continuous time version of a sinusoidal signal and bring out the relation between sinusoidal and complex exponential signals. [8+7]
- 2.a) Expand following function f(t) by trigonometric Fourier series over the interval (0,1). In this interval f(t) is expressed as f(t) = At.
 - b) Prove that discrete magnitude spectrum is symmetrical about vertical axis whereas phase spectrum anti-symmetrical about vertical axis. [8+7]
- 3.a) Find the Fourier transform of symmetrical gate pulse and sketch the spectrum.
 - b) State and prove following properties of Fourier transform
 - i) Time shifting.
 - ii) Differentiation in time domain.

[7+8]

- 4.a) Derive the relationship between rise time and bandwidth.
 - b) Sketch the frequency response of ideal LPF, HPF and BPF.

[8+7]

- 5.a) Prove that the correlation and convolution functions are identical for even signals.
 - b) Show that the auto-correlation function at the origin is equal to the energy of the function. [8+7]
- 6.a) State and prove sampling theorem for band limited signals using analytical approach.
 - b) Give introduction to band pass sampling.

[8+7]

- 7.a) Find Laplace transforms and sketches their ROC of:
 - i) x(t) = u(t-5)
 - ii) $x(t) = e^{j\omega t} u(t)$
 - b) Find the inverse Laplace transform of: X(s) = (-5s-7)/(s+1)(s-1)(s+2).

[8+7]

- 8.a) Determine z transform, pole zero locations and sketch the ROC of following signal $x(n) = -u(-n-1) + (1/2)^n u(n)$.
 - b) Find the inverse z transform of $X(z) = (2+z^{-1})/(1-0.5z^{-1})$ with ROC |z| > 1/2 using power series expansion. [7+8]