Code No: 114CU

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year II Semester Examinations, May-2015 ELECTROMAGNETIC THEORY AND TRANSMISSION LINES (Electronics and Communication Engineering)

(Electronics and Communication Engineering)
Time: 3 Hours

Note: This question paper contains two parts A and B.

Max. Marks: 75

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

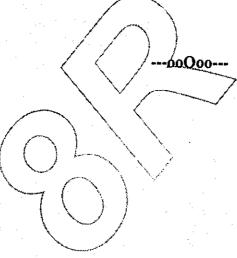
÷ .	Part- A	(25 Marks)
1.a)	State Coulomb's Law	[2M]
b)	Write expression for E at point P for different types of charge dist	ributions [3M]
c)	Write applications of Ampere's circuital Law.	[2M]
d)	Write Maxwell's equations in integral form.	[3M]
e)	Write the wave equation for free space and conducting medium.	[2M]
f)	Write the expressions for Brewster angle, critical angle an	d total internal
	reflection.	[3M]
g)	Draw the equivalent circuit of a two wire transmission line.	[2M]
h)	What are the losses in transmission lines?	[3M]
i)	Write the applications of smith chart.	[2M]
j)	What are the advantages of stub matching?	[3M]
		[21,1]
	Part-B	(50 Marks)
• . •		(4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2.a)	State Gauss's law. Deduce Coulomb's law from Gauss's law.	
b)	Given V= $5x^3y^2z$ and $\varepsilon=2.25\varepsilon_0$, find i) E at point P (-3, 1, 2) ii) ρ_v	at P. [5+5]
	OR	
3.a)	Derive continuity equation.	
b)	Define and explain the following:	
	i) Electric flux density D ii) Electric field intensity E.	[6+4]
4.	State Ampere's circuit law. A hollow conducting cylinder has inn outer radius b and carries current I along the positive z-dire everywhere. OR	er radius <i>a</i> and ection. Find H
5.a)	Using Ampere's circuital law, find H due to any an infinite sheet of	arreast
b) ·	Write the differences between displacement current density and conduction	
	current density.	[5+5]
6.a)	Explain the concepts of conduction, convection and displacem materials.	ent current in
b)	What are "isotropic" and "homogeneous" dielectric materials? OR	[5+5]
7.a)	State and prove Poynting theorem.	
h)	Define Description 1 1 1 2	

Define Brewster angle and discuss the Brewster and degree of polarization.[5+5]

- 8.a) Derive an expression for reflection when a wave is incident on a dielectric obliquely with parallel and perpendicular polarization.
 - b) A medium is characterized by $\sigma = 0$; and $\mu = 2\mu_0$ and $\epsilon = 5\epsilon_0$. If $H = 2\cos(\omega t 3y)$ az A/m, calculate W and E. [5+5]

OR

- 9.a) Derive the relationship between secondary constants and primary constants of a transmission line.
 - b) What is meant by distortion? Derive the conditions for a distrortionless transmission line. [5+5]
- 10.a) Explain the reflection coefficient and voltage standing wave ratio of a transmission line.
 - b) Describe the applications and characteristics of $\lambda/2$ and $\lambda/4$ lossless transmission line elements. [5+5]


OR

11.a) Explain VSWR and Reflection Coefficient. Derive Expression for the same.

b) A 30m long lossless transmission line with $Z_0 = 50\Omega$ operating at 2 MHz is terminated by a load $Z_L = 120 + j40$ on the line. Find:

i) the reflection coefficient ii) the VSWR and the input impedance.

Velocity of signal on the line is v = 0.6C(C = velocity in free space) (Use smith's chart).

