Code No: 113BR

## JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, May/June - 2015 BASIC ELECTRICAL ENGINEERING

(Common to CSE, IT)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

## PART- A

(25 Marks)

| 1.a) | Write the differences between active and passive elements.                                         | [2M]           |
|------|----------------------------------------------------------------------------------------------------|----------------|
| b)   | Explain star to delta transformation with an example.                                              | [3M]           |
| c)   | In a series R-L circuit, the p.d. across the resistance R is 12 V and the                          | hend           |
|      | across the inductance L is 5 V. Find the supply voltage and the phase between current and voltage. | angle [2M]     |
| d)   | A coil has a resistance of 4 Ω and an inductance of 9.55 mH. Calculate                             | i) the         |
|      | reactance, ii) the impedance, and iii) the current taken from a 240 V, supply.                     | 50 Hz          |
| e)   | Define the regulation of single phase transformer.                                                 | [3M]           |
| f)   | Define the efficiency of single phase transformer. Explain the effect of                           | [2M]           |
| •    | factor on the efficiency.                                                                          | [3M]           |
| g)   | Define slip. What is the relationship between slip and speed of the ind                            | uction         |
|      | motor?                                                                                             | [2M]           |
| h)   | Differentiate between self excited and separately excited dc machine.                              | [3M]           |
| i)   | Explain the classification of instruments.                                                         | [2M]           |
| j)   | What are the different types torques acting on the moving syste                                    | m of           |
|      | measuring instrument?                                                                              | 711 OI<br>[3M] |
|      |                                                                                                    | 1 1 1 1        |

## PART-B

(50 Marks)

State and explain Kirchoffs' laws with an example. 2.a)

Find the equivalent resistance Rab for the circuit shown in figure 1. All the b) resistor values are 30  $\Omega$ . [5+5]



Figure 1

3.a) Calculate  $V_0$  and  $I_0$  for the circuit shown in figure 2.



Figure 2

b) Using superposition theorem find  $v_x$  for the circuit shown in figure 3. [5+5]



Figure 3

- 4.a) A coil of resistance 5 Ω and inductance 120 mH in series with a 100 μF capacitor, is connected to a 300 V,/50 Hz supply. Calculate:
  - i) The current flowing,
  - ii) The phase difference between the supply voltage and current.
  - iii) The voltage across the coil and
  - iv) The voltage across the capacitor.
  - v) Draw the phasor diagram.
  - b) A coil of inductance 80 mH and resistance 60 Ω is connected to a 200 V, 100 Hz supply. Calculate the circuit impedance and the current taken from the supply. Find also the phase angle between the current and the supply voltage.

[7+3]

OR

- 5.a) Define the following:
  - i) Alternating Quantity
  - ii) R.M.S. Value
  - iii) Average value
  - iv) Form factor.
  - b) A coil having a resistance of 10 ohms and an inductance of 0.2H is connected in series with a  $100 \times 10^{-6}$  F capacitor across a 230V, 50Hz supply, Calculate
    - i) The active and reactive components of the current.
    - ii) The voltage across the coil, Draw the phasor diagram.

[6+4]

- 6.a) Draw and explain the phasor diagram for an ideal transformer on no-load.
  - b) A 500 V/100 V, single-phase transformer takes a full load primary current of 4 A. Neglecting losses, determine:
    - i) The full load secondary current, and
    - ii) The rating of the transformer.

[6+4]