Code No: 111AB

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B.Tech I Year Examinations, June - 2014 MATHEMATICS-I

(Common to all Branches)

Time: 3 hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

1.a) b)	Define an orthogonal matrix. When a quadratic form is said to be	[2m] [3m]
0)	i) Positive definite ii) Negative definite iii) Positive semi defi	inite.
c)	State Rolle's Theorem.	[2m]
d)	When a function f(x, y), with usual notations of partial differential coe	fficients,
	will have maximum, minimum and can't be decided?	[3m]
e)	In evaluating $\iint_R f(x, y) dxdy$ bounded by the coordinate axes	and the
	R	
	line $\frac{x}{a} + \frac{y}{b} = 1$, find the limits of x and y.	[2m]
f)	Find the limits of integration after changing the order of in	tegration
	$\operatorname{of} \int_0^1 \int_{x^2}^{2-x} xy dy dx.$	[3m]
g)	State Law of Natural Growth.	[2m]
h)	Solve the differential equation $(D^2 - 3D + 4)y = 0$.	[3m]
	If $L[f(t)] = \frac{1}{(s-1)^2}$, then find $L^{-1}\left[\frac{1}{s(s-1)^2}\right]$ using any theorem of	Laplace
	transforms.	[2m]
j)	Find $L(5\sin t + 2\sin 3t)$.	[3m]
	Y .	

PART-B

2. Using Cayley Hamilton theorem find the inverse of the matrix $\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$.

OR

3. Find the Eigen values and the corresponding Eigen vectors of the matrix

$$\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$

Expand $e^x \sin y$ in powers of x and y. 4.

- Find the Maximum or minimum values of $f = 3x^4 2x^3 6x^2 + 6x + 1$. 5.
- Evaluate $\iint r^3 dr d\theta$ over the area included between the circles $r = 2\sin\theta$ and 6.a)
 - Evaluate $\int_0^1 \int_0^{1-x} \int_0^{1-x-y} dx dy dz$

OR

- Evaluate $\int_{1}^{1} \int_{1}^{\sqrt{x}} (x^2 + y^2) dx dy$ 7.a)
 - Evaluate $\iiint_{V} (xy + yz + zx) dx dy dz$, where V is the region of space bounded by planes by x = 0, x = 1, y = 0, y = 2 and z = 0, z = 3.
- 8. If a voltage of 20 cos5t is applied to a series circuit consisting of 10 ohm resistor and 2 henry inductor, determine the current at any time t.

OR

- Solve the differential equation $(D^2 2D + 1)y = x^2e^{3x} \sin 2x + 3$. 9.a)
 - Bacteria in a culture grow exponentially so that the initial number has doubled in b) 3 hours. How many times, the initial number will be present after 9 hours.
- Using Laplace transform solve the differential equation $\frac{d^2x}{dt^2} 2\frac{dx}{dt} + x = e^t$, given 10. that x(0) = 2, x'(0) = -1.

- OR
 Find the inverse Laplace transform of $\log \left(1 + \frac{16}{s^2}\right)$.
 - Find the Laplace transform of f(t) where $f(t) = \left| \begin{array}{c} t-1, \ \frac{1}{2} < t < 1 \end{array} \right|$.
