Code No: 09A1BS04

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B. Tech I Year Examinations, June - 2014

R09

Max. Marks: 75

MATHEMATICAL METHODS (Common to EEE, ECE, CSE, EIE, BME, IT, ETM, ICE)

Time: 3 hours

Answer any five questions All questions carry equal marks

1.a) Expand the function $f(x) = x - x^2$; $-\pi < x < \pi$ as a Fourier series. Deduce that $\frac{\pi^2}{12} = \frac{1}{1} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$

b) Find the Half range cosine series for the function $f(x) = (x-1)^2$ in 0 < x < 1.

2.a) Using Simpson's $3/8^{th}$ rule Evaluate $\int_0^{0.3} \sqrt{1-8x^3} dx$, by taking 7 ordinates.

b) Using the following table fit a curve of the form $y = ax^b$ using method of least squares.

 x
 1
 2
 3
 4
 5
 6

 y
 1200
 900
 600
 200
 110
 50

3.a) Define the rank of the matrix. Find the values of L and M such that the rank of the

matrix
$$\begin{bmatrix} 2 & 1 & -1 & 3 \\ 1 & -1 & 2 & 4 \\ 7 & -1 & L & M \end{bmatrix}$$
 is 2.

- b) Solve the following equations by LU decomposition method. x-y+z=1; 2x+y-z=2; 5x-2y+2z=5.
- 4. Find the Characteristics equation of the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ and hence find the matrix represented by $A^8 5A^7 + 7A^6 3A^5 + A^4 5A^3 + 8A^2 2A + I$
- 5.a) Solve the partial differential equations $p^2 + q^2 = 4pq$.
- b) Solve the partial differential equation x(y-z)p + y(z-x)q = z(x-y).
- 6.a) If f(0)=1, f(1)=2, f(2)=33 and f(3)=244, find a cubic spline approximation assuming M(0)=M(3)=0. Also find f(2.5).
- b) Find an iterative formula to find the reciprocal of a given number N and hence find the value of 1/19.

- 7.a) Use Runge-Kutta method of fourth order to find y(0.2), given $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2}$, y(0)=1, taking h=0.2.
 - b) Given $\frac{dy}{dx} = xy + y^2$, y(0)=1, y(0.1)=1.1169, y(0.2)=1.2774, y(0.3)=1.5041. Use Adam's method to estimate y(0.4).
- 8. Reduce the quadratic form $30xy 12xz + 8yz 21x^2 11y^2 2z^2$ to canonical form by orthogonal transformation and find its index and signature.
