
R09 Code No: R09220504 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B. Tech II Year II Semester Examinations, May-2013 Formal Languages and Automata Theory (Computer Science and Engineering) Max. Marks: 75 Time: 3 hours Answer any five questions All questions carry equal marks

Design NFA to accept strings with a's and b's such that the string end with 'bb'. 1.a)

Design FA to accept string with 'a' and 'b' such that the number of b's are b) divisible by 3. [15]

-2,a) Convert the following NFA with ϵ to equivalent DFA b $\rightarrow A$ Φ B A

В B Φ C (C): Φ A

b) Construct the minimum state automata for the following. [15]

		a	b	
	$\rightarrow A$	В	A	
	: ::B	A :	:::C	
		D:	B	
	D	D	A	
	Е	D	F	
	F	G	Е]
 	G	F	G	
* * * * * * * * * * * * * * * * * * *	H	G	· D]

....

Find the regular expression for the Language $L = \{a^{2n}b^{2m} \mid n \ge 0, m \ge 0\}$. 3.a)

Construct NFA for the R.E. that contains odd number of 0's over $\Sigma = \{0\}$. b)

c)

Write a R.E. for the following DFA. [15]

K+X +X 5 4 5	**** **** **** **** **** **** **** **** ****	+ x x x + + x + x + x + x + x + x + x +	a 🔛	:: :h	X X + 0 4 X + 5 X	+ K K K + + K + K K K + + K + K K K + + K K K K K + K
		\rightarrow P	Q	P	**	
		Q	Q	P		

Write CFG for the language $L = \{a^n b^n | n \ge 1\}$ i.e. the set of all strings of one or more a's followed by an equal mimber of b's.

b) Construct right linear grammar for the following DFA. [15]

	0	1
\rightarrow A	В	С
(B)	В ::	C.C.
С	A	С

b)	Discuss the langua accepts the strings (a+b)* and show the Convert the given (S	with number of the instantaneous	of a's less than	number of b's v	where wis in	
****	$ \begin{array}{c} A \longrightarrow a \\ C \longrightarrow aB \mid b \end{array} $		SE	SR		
6.a)	Using CFL pumpir L={a ⁱ b ^j c ^k i <j<k}< th=""><th>ng lemma show</th><th>that the followin</th><th>g language is no</th><th>ot context free</th><th></th></j<k}<>	ng lemma show	that the followin	g language is no	ot context free	
b)	Obtain the following		NF.		[15]	
* * * * * * * * * * * * * * * * * * *	S.→aBa abb A.→ab AA B→aB a		SR		SR.	**************************************
7.a) b)	Construct TM for the Design a Turing Management	achine to recogn	nize the language		1}. [15]	
b) c)	Is the language a ⁿ b ¹ What do you mean Write short notes or	by 'decidable' a	and 'undecidable'	problem? Give	example. [15]	SR
		~ ~ ~ (0000			
*** X * X * X * X * X * X * X * X * X *			*** ***	**************************************		* * * * * * * * * * * * * * * * * * * *

X + + X + X + X + X + X