Code No: 117FE ## JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech IV Year I Semester Examinations, April/May - 2018 ## MICROWAVE ENGINEERING (Electronics and Communication Engineering) Max. Marks: 75 Time: 3 Hours Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. PART-A (25 Marks) [2] Draw the field pattern of TE_{10} mode in rectangular waveguide. 1.a) Sketch microstrip line diagram and indicate important features. [3] b) [2] Draw the E-plane Tee junction diagram. Find the resonant frequency of an air-filled cavity resonator with dimensions c) d) [3] a=5 cm, b=3=cm and d=4 cm. [2] Draw typical Applegate diagram. e) [3] Explain transit time effect in conventional tubes. f) [2] What is mode jumping in cavity magnetron / how this can be avoided? g) [3] Draw the diagram of IMPATT diode and carrier concentration. h) [2] State the significance of S-Parameters at high frequencies. i) 131 What are the possible errors in high frequency measurements? j) PART-B (50 Marks) Why TEM modes are not possible in hollow rectangular wave guides? A TE_{10} wave at 10 GHZ propagates in a rectangular wave guide of 1.5 cm \times 0.6 cm 2.a) dimensions filled with medium air. Determine guided wave length and wave impedance. b) OR Derive the expressions for the field components due to TM waves in a rectangular waveguide. Describe the working of H-plane Tee and state why it is called shunt Tee. A directional coupler is having coupling factor =10 dB and directivity = 40dB. Determine 4.a) the power coupled in forward and reverse direction when input power is 10 W assuming b) the coupler is lossless. With the help of diagram, explain principles and operation of a 3-port circulator. 5.a) [5+5]List and explain the characteristics of Ferrites. b) | 6.a) | With the help of Applegate diagram, explain the bunching process and h | ence the | |---------------------|---|---------------------| | b) | velocity modulation in Klystron amplifier. State the limitations of conventional tubes at high frequencies. | [5+5] | | 7.a) | OR Classify the various microwave tubes with respect to the orientation of ele | ctric and | | b) | magnetic fields. Explain with neat sketch, the principle of operation of a TWT amplifier and | write the | | 0) | equations for the maximum voltage gain and efficiency. | [5+5] | | 8.a)
b) | Derive equation for Hull cut-off voltage in a Magnetron. Explain the principle of operation of cavity magnetron and discuss phase focusing | ng effect?
[5+5] | | 0.0) | OR Discuss in detail the principle of operation of GUNN diode considering the t | wo valley | | 9.a) | model theory and sketch its volt-ampere characteristics. An n-type GaAs GUNN diode has the following specifications: | | | b) | Threshold field 3kV/cm | | | 8R - | Applied field Device length Deping constant 10 micrometers 10 ¹⁴ electrons/cm ³ | | | | Operating frequency 10 GHz | [5+5] | | | Calculate the current density (-ve) and electron mobility in the device. | [5,5] | | 10.a) | t 1 t · · · · · · · · · · · · · · · · · | [5+5] | | 8 R b) | OR O | Jsing two | | 11.a) | 1: CCt mathads | [5+5] | | b) | What are the different possible errors that will effect VSWR measurements? | (0) | | | | | | 8 - | 8 - 3 - 500000- 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 | | | Security of the St. | | 1 | | | | | | ž
ž | | | | AD. | 8R 8R 8R 8R | | | | | | | | | | | | | | 8R 8R 8R 8R 8R