Code No.: EC403PC

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-II-Semester End Examinations (Regular) - June- 2022 LINEAR IC APPLICATIONS

(ECE)

	(ECE)				
	[Ti	me: 3	Hours] [Max. Marks:	70]	
	Note: 1. Answer any <u>FIVE</u> questions. Each question carries 14 marks.				
	1101		All questions carry equal marks.		
3. Illustrate your answers with NEAT sketches wherever necessary.					
		٥.		4=70	
				4-70	
	1.	a)	For Op-amp, CMRR = 10^5 and differential mode gain $A_{DM} = 10^5$. Calculate the common mode gain A_{CM} of the Op-amp.	[7M]	
		b)	With block diagram, explain the general stages of an Op -Amp IC.	[7M]	
	2.	a) b)	Draw a sample and hold circuit. Explain its operation and indicate its uses. Explain the difference between the integrator and differentiator and give one application of each.	[7M] [7M]	
	3.	a) b)	Design a HPF at a cut-off frequency of 1 kHz and pass band gain of 2. With circuit diagram, describe the working of a Wien bridge oscillator circuit using op -amp.	[7M] [7M]	
	4.	a)	The free running frequency of a 565 PLL is 100 kHz, the filter capacitor is $2\mu F$ and supply voltage is \pm 6V. Compute the lock in range, capture range frequency and value of external components R_T and	[7M]	
		b)	C_T . A 555 timer Astable multivibrator uses R_A = 6.8 k Ω , R_B = 3.3k Ω and C = 0.1 μF . Calculate the free running frequency of oscillation.	[7M]	
	5.	a)	Determine the output voltages caused by each bit in a 6-bit ladder if the input levels are 0=0V and 1=+16V. Determine the resolution and full-scale output of this circuit. Find out the voltage from the	[7M]	
		b)	above ladder for a digital input of 101011. Draw the circuit and explain the working of dual slope A/D converter.	[7M]	
	6.	a) b)	Define Slew rate. How it effect the op-amp performance? Explain. Sketch the equivalent circuit of an Op-amp & Define common mode rejection ratio.	[7M] [7M]	
	7.	a)	Draw the circuit of (i) voltage to current (V to I) converter with grounded load (ii) current to voltage (I to V) converter with grounded load.	[7M]	
		b)	Sketch an adder circuit using op -amp to obtain the sum of three inputs.	[7M]	
	8.	a) b)	What is the relationship between order of a filter and roll off rate? Why do we use higher order filters and List the applications of VCO. ***********************************	[7M] [7M]	