Code No.: MA303BS

R20 H.T.No. R

CMR ENGINEERING COLLEGE: : HYDERABAD **UGC AUTONOMOUS**

II-B.TECH-I-Semester End Examinations (Regular) - January- 2022 PROBABILITY AND STATISTICS & COMPLEX VARIABLES (MECH)

[Time: 3 Hours]

[Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question

				PART-A				(20 Marks)		
1)	If A and B a	re events w	th $P(A) =$	$\frac{3}{8}$, $P(B) = \frac{1}{2}$	and $P($	$A \cap B) =$	$\frac{1}{4}$, find I	$P(A^C \cap B^C).$		[2]
)	A random vari	able X has -2 -1 0.4 K	the probabi 0 1 0.2 0.3							[2]
	Find K and t	ne mean val	ue of X	9 - 1100 -						
)	Write the four	properties of	of the Norma	al distribution. $(X = 2) = 9P$	(Y-A)	⊥00 <i>P(V</i>	-6) than	C-1		[2]
1	Define Null H				$(\Lambda - 4)$	+ 901 (A	- 0) then	find mean.		[2]
	A sample of 4	00 items is	taken from	a population wl	nose stand n mean 3	lard deviat 0. Calcula	ion is 10.7 te 95% co	The mean of the onfidence interva	sample is	[2]
	Let a, b , and $u(x, y) = ax$	$a^2 + bxy + a$	cy² to be ha	armonic.	relatio	nship an	nong the	m for the	function	[2]
	Find the real a	nd imaginar	y parts of e	(z^2) .						[2]
	Evaluate $\int_{C} \frac{d}{z^2}$									[2]
		ant points o	f the transfo	$rmation w = \frac{6}{3}$	z-9					[2]
	Find the invari							(50 Marks)		
				PART-B						
	Find the invari		llowing fun							[5N
	a) A random var		llowing fun		4	5	6	7		[5N
	a) A random var x 0 P(x) 0	riable has fo		ction 3 2k	3k	5 K ²	6 2k ²	7 7k ² +k		[5]

	What is the probability that a car purchased is defective?	
	OR	
3.	a) The probability that a man hit a target is 1/3. If he fires 6 times find the probability that he fires	[5M]

3. (i)At most 5 times (ii) exactly two times (iii) at least two times.

ł) Find the mean and stan	ndard de	viation of a continuous random variable X, whose probability density	[5M]
	function is given by $f(x)$	$(x) = \begin{cases} e^{-x} \end{cases}$	x^{*} , $0 < x < \infty$	10001
	g. (,	(0,	else where	

Fit a Poisson distribution to the following data

[10M]

X	0	1	2	3	4	5	6	7
f	305	365	210	80	28	9	2	1

OR

a) If the masses of 300 students are normally distributed with mean 68 kgs and standard deviation 3 kgs, how [5M] many students have masses (i) greater than 72kg (ii) less than or equal to 64kg.

b) 20% of items produced from a factory are defective. Find the probability that in a sample of 5 chosen at

random (i) none is defective (ii) One is defective (iii) P(1 < X < 4).

[5M]

Two random samples from two normal populations are given below. Do the estimates of Population variances [10M] differ significantly?

Sample-1	16	26	27	23	24	122
Sample-2	33	42	35	32	28	31

OR

In random samples of 600 and 1000 men from two cities 400 and 600 men are found to be literate. Do the data indicate at 5% level of significance that the populations are significantly different in the Percentage literacy?

8. If f(z) = u + iv is an analytic function and $u - v = \frac{\sin x + \cos x - e^{-y}}{2\cos x - e^{y} - e^{-y}}$, find f(z) subject to the [10M] condition $f\left(\frac{\pi}{2}\right) = 0$.

a) Prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^p = p^2 |f(z)|^{p-2} |f'(z)|^2$ where W = f(z) is analytic function.

b) Determine the imaginary part of an analytics function f(z) whose real part of an analytic function is ex(xcosy-ysiny)

10. a) Using Cauchy's integral formula evaluate $\int_C \frac{z^4}{(z+1)(z-i)^2} dz$ where C is ellipse $9x^2 + 4y^2 = 36$. [5M]

b) State Taylor's theorem. Expand $f(z) = \frac{1}{z^2 - z - 6}$ about z = 1. [5M]

11. a) Find the poles and residues of $\frac{3z+1}{(z+1)(2z-1)}$

b) Find the bilinear transformation which maps the points z = 1, i, -1 to the points w = i, 0, -irespectively.