Code No.: EE104ES

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

I-B.TECH-I-Semester End Examinations (Supply) - January- 2022 BASIC ELECTRICAL ENGINEERING (Common to CSC, CSD, CSE, IT)

[Time: 3 Hours]

[Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question

carries 10 marks and may have a, b, c as sub questions.

	$\underline{PART-A} \tag{20 Mar}$	
1. a)	State KVL.	[2M]
b)	Give the V-I relation of (i) Inductance (ii) capacitance.	[2M]
c)	Write the expression for resonant frequency of series RLC circuit connected to A.C supply.	[2M]
d)	What is the power factor and active power of a circuit carries a current of 15 \perp 45 ⁰ A and applied voltage of 230 \perp 15 ⁰ V?	[2M]
e)	What is Ideal Transformer? Write the difference between ideal and practical transformer?	[2M]
f)	What is auto transformer? Give its applications.	[2M]
g)	Explain the significance of back E.M.F in D.C motor.	[2M]
h)	Give the classification of D.C motors.	[2M]
i) j)	Why starter is needed in case of 3-Phase Induction motor? Define slip of a 3-phase Induction motor.	[2M] [2M]

PART-B

(50 Marks)

2. a) State and explain Superposition theorem.

b) Convert below delta network into an equivalent star network.

[5M]

[5M]

OR

3. a) State and explain Thevenin's theorem.

[5M]

b) Find the current flowing through 15 Ω resistance using Norton's theorem.

4. a) Derive average and R.M.S value of a sinusoidal quantity.

[5M] [5M]

[5M]

b) A coil takes current of 2 amps when connected across 200V, 50 Hz supply. The power consumed by the coil is found to be 300 Watts. Find the inductance and power factor of the coil.

OR

- 5. A balanced 3-phase delta connected load of (6+j8) Ω/ phase is connected to a 3-phase [10M] 400V, 50 Hz balanced supply. Find the current, p.f, active power, reactive power and apparent power of the load.
- 6. a) Explain the construction and working principle of a single phase transformer. [6M]
 - b) The maximum flux density in the core of a 220/440V, 50Hz single phase [4M] transformer is1.2Wb/m². If the E.M.F per turn is 20V, determine (i) primary and secondary turns and (ii) area of the core.

- 7. a) Develop the equivalent circuit of a single phase transformer. [5M]
 - b) Explain various configurations of 3-phase Transformers.

[5M]

- 8. a) Derive the E.M.F equation of D.C. Generator. [5M] b) Distinguish between self excited and separately excited D.C. Generators. How are
 - [5M]

[4M]

[10M]

self excited D.C. Generators classified? Give their circuit diagrams.

- 9. a) Derive the torque equation of a D.C. Motor. [6M]
 - b) A 220 V D.C shunt motor has an armature resistance of 0.5Ω and takes a current of 40 A on full loads. By how much main flux must be reduced to raise the speed by 60%, if the developed torque is constant?
- 10. a) Sketch and explain torque-slip characteristic of a 3- phase Induction motor. [6M] [4M]
 - b) Explain how rotating magnetic field is produced in a 3- phase Induction motor.

OR

11. Explain the working of synchronous Generator with neat sketch.