Code No: 137FF

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech IV Year I Semester Examinations, March - 2021

OPTIMIZATION TECHNIQUES

(Common to EEE, ECE)

Time: 2 Hours

Max. Marks: 75

Answer any Five Questions All Questions Carry Equal Marks

- What are the different types of optimization problems? Explain each with the help of 1. suitable objective function and constraints.
- State and explain the necessary and sufficient conditions for existence of relative optima in [15] case of multivariable optimization with constraints.
- Write the standard form of the following LPP 3.

 $Z=X_1-X_2-2X_3$ Max

Subject to

$$X_1 + X_2 + X_3 \le 15$$

$$2X_1 - X_2 + X_3 \le -10$$

$$X_1 + 2X_3 = 10$$

$$X_1, X_2 \ge 0$$
 and X_3 is unrestricted in sign.

[15]

Find the basic feasible solution with cost using Vogel's approximation method. [15] 4.

	DI	D2	D3	D4	supply
01		2	-2	3	70
02	2	4	0	1	38
O3	1	2	-2	5	32
Demand	40	28	30	32	

Minimize $f(x) = f(x_1, x_2) = 2X_1^2 + 3X_2^2 - X_1X_2$ using the univariate method taking 5.

[15]

- Minimize $f(x_1, x_2) = x_1^2 2x_1 + 1 + x_2^2$ using the steepest descent method. Take starting [15] point $(0,0)^{\mathrm{T}}$
- Solve the following problem by using interior penalty function approach. 7.

Minimize
$$f(x_1, x_2) = 6(x_1)^2 + 4x_1x_2 + 3x_2^2$$

Subject to:
$$x_1 + x_2 - 5 = 0$$

- State the Bellman's principle of optimality. 8.a)
 - Explain its application in multi-stage decision process with suitable example. b)

---00O00---