					*	June guinney
8	R	88	14 8 R	? 8R	- 8 R	8H
************				eran		

			F
	Code No: 111AL	L NEHRU TECHNOLOGICAL UNIVERSIT	Y HYDERABA
	JAWAIIAKLIX	B. Tech I Year Examinations, July - 2021	
		MATHEMATICAL METHODS	
? [Time: 3 hours	Common to EEE, ECE, CSE, IT)	Max. Ma
	\Times &	Answer any five questions	
		All questions carry equal marks	

Interpolate the value of y at x = 2.5 from the following data.

		y. 12			75 H	\langle		((
1.5	Drove that	$\Delta \nabla = \Delta - \nabla \text{ an}$	d $\nabla = E^{-1} \Delta$, where Δ, ∇	$^{\prime}$ and E	are the	forward,	backward	d and
D)	Flove that		·	,					+81

shifting operators respectively.

2.	Fit a straight	line of the	form $y = a + bx$	and a quadratic	curve of	the form
	y = a + bx + cx					[15]

and the second			$\rightarrow <$	
x:	1	2	3	4
y:	10	5	2	1

Solve the equations 10x + y + z = 12, 2x + 10y + z = 13, 2x + 2y + 10z = 104 by Gauss-3. [15] Seidel iteration method.

Apply Runge-Kutta method of order 4, solve
$$\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$$
, $y(0) = 1$ at $x = 0, 1, 0.2$.

5.

Find the Fourier series expansion of
$$f(x) = \begin{cases} \pi + x, & -\pi < x \le 0 \\ 0, & 0 < x < \pi \end{cases}$$
, $f(x + 2\pi) = f(x)$ and hence show that $1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.

Solve x(y-z)p + y(z-x)q = z(x-y). 6.a)

Find a partial differential equation by eliminating the arbitrary functions f and gfrom z = f(x) g(y).

7.a) If
$$F = (x+y+1)\hat{i} - \hat{j} - (x+y)\hat{k}$$
, show that $F \cdot Curl F = 0$.
b) Show that $\nabla^2 (r^n) = n(n+1)r^{n-2}$. [7+8]

Verify Gauss's divergence theorem for $\vec{F} = x^2 \hat{i} + z \hat{j} + yz \hat{k}$ taken over the cube bounded 8. by x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1.