Code No: 137CF

## No: 137CF JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech IV Year I Semester Examinations, December - 2019
ELECTRONIC MEASUREMENTS AND INSTRUMENTATION
(Floatronics and Communication Engineering)

| (Electronics and Communication Engineering)                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Time:                                                                                                                                                                         | 3 Hours (Max. Marks: 75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
| Note:                                                                                                                                                                         | This question paper contains two parts A and B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|                                                                                                                                                                               | Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|                                                                                                                                                                               | consists of 5 Units. Answer any one full question from each unit. Each question carries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
|                                                                                                                                                                               | 10 marks and may have a, b, c as sub questions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|                                                                                                                                                                               | PART- A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
| $\bigcirc \cap_{i \in \mathcal{N}}$                                                                                                                                           | $\bigcirc \square \bigcirc \square$                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                               | Define gross errors and systematic errors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| b)                                                                                                                                                                            | State specification of instruments [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
| c)                                                                                                                                                                            | Define distortion [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| d)                                                                                                                                                                            | State the applications of pulse and square wave generators. [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| e)                                                                                                                                                                            | How frequency can be measured using oscilloscope? [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| f)                                                                                                                                                                            | How frequency can be measured using Lissajous figures. [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| $\bigcirc \bigcirc $ | Explain the principle of piezo transducer. [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
| ><  _/ h)                                                                                                                                                                     | Draw Syncro diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
| >-/   \ 1)                                                                                                                                                                    | What is meant by balancing a bridge? [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
| j)                                                                                                                                                                            | Draw the block diagram of data acquisition system. [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
|                                                                                                                                                                               | D. ADMI D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
|                                                                                                                                                                               | PART-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
|                                                                                                                                                                               | (50 Marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| 2.a)                                                                                                                                                                          | Explain the basic principle of a shunt type ohmmeter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| <u> </u>                                                                                                                                                                      | Calculate the maximum percentage error in the sum and difference of two voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| $\cup \cap$                                                                                                                                                                   | measurements when $V_1=100v \pm 1\%$ and $V_2=80v \pm 5\%$ . [6+4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|                                                                                                                                                                               | $\mathbf{OR}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
| 3.a)                                                                                                                                                                          | OR Define Accuracy, Precision, Resolution and Limiting error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
| 3.a)                                                                                                                                                                          | Define Accuracy, Precision, Resolution and Limiting error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| 3.a)<br>b)                                                                                                                                                                    | Define Accuracy, Precision, Resolution and Limiting error. Design a range switch for an ammeter, with an internal resistance $r_m = 100 \Omega$ and a full                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
|                                                                                                                                                                               | Define Accuracy, Precision, Resolution and Limiting error. Design a range switch for an ammeter, with an internal resistance $r_m = 100\Omega$ and a full scale deflection of $I_m$ =1mA. The meter is to measure in the ranges of 10mA, 100mA and                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|                                                                                                                                                                               | Define Accuracy, Precision, Resolution and Limiting error. Design a range switch for an ammeter, with an internal resistance $r_m = 100 \Omega$ and a full                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| b)                                                                                                                                                                            | Define Accuracy, Precision, Resolution and Limiting error. Design a range switch for an ammeter, with an internal resistance $r_m = 100\Omega$ and a full scale deflection of $I_m=1mA$ . The meter is to measure in the ranges of $10mA$ , $100mA$ and $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
|                                                                                                                                                                               | Define Accuracy, Precision, Resolution and Limiting error. Design a range switch for an ammeter, with an internal resistance $r_m = 100\Omega$ and a full scale deflection of $I_m=1mA$ . The meter is to measure in the ranges of $10mA$ , $100mA$ and $500mA$ . What are the main requirements of sine wave signal generator in instrumentation?                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
| b)                                                                                                                                                                            | Define Accuracy, Precision, Resolution and Limiting error. Design a range switch for an ammeter, with an internal resistance $r_m = 100\Omega$ and a full scale deflection of $I_m=1mA$ . The meter is to measure in the ranges of $10mA$ , $100mA$ and $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
| b)                                                                                                                                                                            | Define Accuracy, Precision, Resolution and Limiting error. Design a range switch for an ammeter, with an internal resistance $r_m = 100\Omega$ and a full scale deflection of $I_m=1mA$ . The meter is to measure in the ranges of $10mA$ , $100mA$ and $500mA$ . What are the main requirements of sine wave signal generator in instrumentation?                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
| b)                                                                                                                                                                            | Define Accuracy, Precision, Resolution and Limiting error. Design a range switch for an ammeter, with an internal resistance $r_m = 100\Omega$ and a full scale deflection of $I_m=1mA$ . The meter is to measure in the ranges of $10mA$ , $100mA$ and $500mA$ . What are the main requirements of sine wave signal generator in instrumentation? Explain with suitable block diagram how an AF sine/ square generator works. [4+6]                                                                                                                                                         |  |  |  |  |  |  |  |  |
| b) 4.a) b) 5.a)                                                                                                                                                               | Define Accuracy, Precision, Resolution and Limiting error. Design a range switch for an ammeter, with an internal resistance $r_m = 100\Omega$ and a full scale deflection of $I_m=1mA$ . The meter is to measure in the ranges of $10mA$ , $100mA$ and $500mA$ . What are the main requirements of sine wave signal generator in instrumentation? Explain with suitable block diagram how an AF sine/ square generator works. [4+6] OR What is wave analyzer? Explain how it analyzes the harmonics?                                                                                        |  |  |  |  |  |  |  |  |
| b) 4.a) b)                                                                                                                                                                    | Define Accuracy, Precision, Resolution and Limiting error. Design a range switch for an ammeter, with an internal resistance $r_m = 100\Omega$ and a full scale deflection of $I_m=1mA$ . The meter is to measure in the ranges of $10mA$ , $100mA$ and $500mA$ . What are the main requirements of sine wave signal generator in instrumentation? Explain with suitable block diagram how an AF sine/ square generator works. [4+6] OR What is wave analyzer? Explain how it analyzes the harmonics? Enlist the various applications of spectrum analyzer along with the description of its |  |  |  |  |  |  |  |  |
| b) 4.a) b) 5.a)                                                                                                                                                               | Define Accuracy, Precision, Resolution and Limiting error. Design a range switch for an ammeter, with an internal resistance $r_m = 100\Omega$ and a full scale deflection of $I_m=1mA$ . The meter is to measure in the ranges of $10mA$ , $100mA$ and $500mA$ . What are the main requirements of sine wave signal generator in instrumentation? Explain with suitable block diagram how an AF sine/ square generator works. [4+6] OR What is wave analyzer? Explain how it analyzes the harmonics?                                                                                        |  |  |  |  |  |  |  |  |
| b) 4.a) b) 5.a)                                                                                                                                                               | Define Accuracy, Precision, Resolution and Limiting error. Design a range switch for an ammeter, with an internal resistance $r_m = 100\Omega$ and a full scale deflection of $I_m=1mA$ . The meter is to measure in the ranges of $10mA$ , $100mA$ and $500mA$ . What are the main requirements of sine wave signal generator in instrumentation? Explain with suitable block diagram how an AF sine/ square generator works. [4+6] OR What is wave analyzer? Explain how it analyzes the harmonics? Enlist the various applications of spectrum analyzer along with the description of its |  |  |  |  |  |  |  |  |
| b) 4.a) b) 5.a)                                                                                                                                                               | Define Accuracy, Precision, Resolution and Limiting error. Design a range switch for an ammeter, with an internal resistance $r_m = 100\Omega$ and a full scale deflection of $I_m=1mA$ . The meter is to measure in the ranges of $10mA$ , $100mA$ and $500mA$ . What are the main requirements of sine wave signal generator in instrumentation? Explain with suitable block diagram how an AF sine/ square generator works. [4+6] OR What is wave analyzer? Explain how it analyzes the harmonics? Enlist the various applications of spectrum analyzer along with the description of its |  |  |  |  |  |  |  |  |
| b) 4.a) b) 5.a)                                                                                                                                                               | Define Accuracy, Precision, Resolution and Limiting error. Design a range switch for an ammeter, with an internal resistance $r_m = 100\Omega$ and a full scale deflection of $I_m=1mA$ . The meter is to measure in the ranges of $10mA$ , $100mA$ and $500mA$ . What are the main requirements of sine wave signal generator in instrumentation? Explain with suitable block diagram how an AF sine/ square generator works. [4+6] OR What is wave analyzer? Explain how it analyzes the harmonics? Enlist the various applications of spectrum analyzer along with the description of its |  |  |  |  |  |  |  |  |
| b) 4.a) b) 5.a)                                                                                                                                                               | Define Accuracy, Precision, Resolution and Limiting error. Design a range switch for an ammeter, with an internal resistance $r_m = 100\Omega$ and a full scale deflection of $I_m=1mA$ . The meter is to measure in the ranges of $10mA$ , $100mA$ and $500mA$ . What are the main requirements of sine wave signal generator in instrumentation? Explain with suitable block diagram how an AF sine/ square generator works. [4+6] OR What is wave analyzer? Explain how it analyzes the harmonics? Enlist the various applications of spectrum analyzer along with the description of its |  |  |  |  |  |  |  |  |

|         | 3R -           | 88                                                                                                                                                                                                                                                                                                                                                                                | 8R                                                 | 8R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8R                                               | 8R         |  |  |
|---------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------|--|--|
| · · · S | 6.a)<br>b)     | Explain the op                                                                                                                                                                                                                                                                                                                                                                    | eration of a sar                                   | of a sample CRC npling oscillosco onventional osci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ope with a neat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | block schematic                                  | diagram.   |  |  |
|         | 7.a)<br>b)     | block.<br>Explain the following                                                                                                                                                                                                                                                                                                                                                   | ock diagram of a lowing CRO conii) Trigger and con | vertical deflection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | on system and ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | plain the function                               | on of each |  |  |
| ξ.      | 8.a)<br>b)     | A transducer that measures force has nominal resting resistance of 300 $\Omega$ and is excited by 7.5V. When a 980 dyne force is applied, all four equal resistance bridge elements change resistance by $5.2\Omega$ . Find the output voltage $E_o$ .  Draw the various kinds of thermocouple junctions and their sheaths and discuss the seeback effect in thermocouple.  [4+6] |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |            |  |  |
| ٤       | 9.a) b) 10.a)  | Draw the various The basic AC b AB: R=400Ω, L=10mH. Osci                                                                                                                                                                                                                                                                                                                          | us kinds of them oridge consists of BC: R=150 C    | ge and explain the nometers and explain the following control of the fo | e principle of me plain the principle on the principle on the constants:  where and DA: If the the constants in the constants in the unknown | e of operation.  R=100 $\Omega$ in se of arm CD. |            |  |  |
| ξ       | 3 [11.a)<br>b) |                                                                                                                                                                                                                                                                                                                                                                                   |                                                    | OR<br>neasure linear dis<br>measured using t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 R                                              |            |  |  |
|         |                |                                                                                                                                                                                                                                                                                                                                                                                   |                                                    | ooOoo—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |            |  |  |
| 2       | 3R             | 8R                                                                                                                                                                                                                                                                                                                                                                                | 8R                                                 | 8R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8R                                               | 8R         |  |  |
| ξ       | <b>3</b> R     | 8R                                                                                                                                                                                                                                                                                                                                                                                | 8R                                                 | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8R                                               | 8R         |  |  |
| ξ       | 3R             | 8R                                                                                                                                                                                                                                                                                                                                                                                | 8R                                                 | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8R                                               | 88         |  |  |