10K	OK OK OK OK	o del	of delay	
Code	e No: 135AP		R16	
$S \square_{\text{Time}}$	JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERS B. Tech III Year I Semester Examinations, Decem ELECTROMAGNETIC THEORY AND TRANSMIS (Common to ECE, ETM) 3 Hours	ber - 2019 SSION LINES	SAD Sarks: 75	
Note	This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all q consists of 5 Units. Answer any one full question from each 10 marks and may have a, b as sub questions. PART A	unit. Each questi	A. Part B on carries S Marks)	
1.a) b) c) d) e) f) g) h)	State Coloumb's Law. What is Electric Potential? Give relation between E and V. State Faraday's Law of electromagnetic induction. What is a dielectric material? What are its applications? Define Uniform Plane wayes. State Poynting Theorem. Define Characteristic Impedance. What are the different types of Transmission lines?	82	[2] [3] [2] [3] [2] [3] [2] [3]	
i) i)	What are primary and secondary constants of Transmission lir Explain about reflection coefficient. PART B	8R	[2] [3] [3] (2) Marks)	5
2.a) b)	Explain in detail about Electric Potential. Two point charges -4 μ C and 5 μ C are located at (2,-1, 3) and Determine the potential at (1, 0, 1) assuming zero potential at its open that Electric field intensity E is the negative gradient of Formulate the Continuity of Current equation.	infinity.	ectively. [5+5]	£
4. S ₅ .	In a certain conducting region H=yz($x^2 + y^2$) $a_x - y^2xza_y + 4$. a) Determine J at (5, 2, -3) b) Determine current passing through x=-1, 0 <y, <math="" c)="" prove="" that="" z<2="">\nabla.B=0 Explain the following boundary conditions with necessary equal a) Dielectric-dielectric Interface b) Dielectric-conductor Interface.</y,>	2 P	[5+5]	
8R	8R 8R 8R	88	8R	E

8R 1	18R	88	8R.	88	8R	88	{
6. S 7.	Explain the Ref a) Perfect Cond b) Perfect Diele Describe the fol a) Brewster Ang b) Critical angle c) Surface Impe	uctor ctric. lowing in detail gle and Total Inter		e incidences for	SR [3	[5+5] S+4+3]	\ \{\bigs_{\text{\tin}\text{\tetx{\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\text{\texi}\text{\text{\texi}\text{\texi}\text{\text{\text{\text{\tet{\text{\text{\texi{\text{\texi}\text{\texi}\texit{\text{\t
8.a) b)	Determine the li	ne parameters I ondition for Dis	R, L, G and C. tortionless and m	$Z_o=80$ Ω , $\alpha=0.0$	Ó.	\cap \cap	
9.a) b)	_	s line has Z_o	, 120	Np/m, u=0.6c,	where $c=3\times10^8$	m/sec. [5+5]	
S R10.	Formulate expre a) Lossy Transm b) Lossless Tran	ission line	impedance of:	.8R	8R	[5\frac{1}{2}]	(
11.a)			OR for line with $Z_o = -0.6c$ on the line	50 Ω operating a	at 2 MHz is term	ninated	
8 0	i) Reflection coe ii) Standing Wav iii) Input Impeda Explain in detail	fficient re Ratio	8R,	8R1	8,8	S R [6+4]	E
9							* * * * * * * * * * * * * * * * * * *
9R	8R ,	8 R	300000	8R	8R	8R.	E
3R	8R	8R	82	8.	8R	82	
30	8R .	9 P	8P.	89	8.0	8.0	S.