8R		8R	18R	8R	88	8R_	8R	E	4
8 R			ı III Year II Sei DEŞIGN OF		1 1	HYDERABA	16 D	E	a.
8R	Note:	Part A is comp consists of 5 Un	ulsory which ca nits. Answer any		Answer all question from each unit.	Each question		E	e d
8R	(l.a) b) c) d) e) f) g) h)	What is rolling- Differentiate ba What is an inter What are the for What is surge o	characteristic notice to contact bearing? Il bearings and remail combustion rees acting on the fapring?	What are the appoint of the connecting rooms.	d to the journal beau oplications of rolli ith neat sketches.	ng-contact bear	[2] [3] [2] [3] [2]		P 10 10 10 10 10 10 10 10 10 10 10 10 10
88	i) j)	State two impor	4 1 1 1	adopting involut	te curve for gear to ur and helical gea	rs8H	[3] [2] [3] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	E	
2 3	.a)	the journal is 10 as 28 for centrif atmosphere tem Take diametral of State any two ac	0 mm and load ougal pump beariperature is 30°C clearance as 0.1 lyantages of hyd	on each bearing ngs. The bearing C. The energy d mm. OR rostatic bearings	running at 1440 r is 20 kN. The fact g is running at 750 dissipation coeffic	or ZN/p may be C temperature a ient is 875 W/	e taken and the		
8 R4		A rolling contact (a) Radial load at 600 r.p.m. for of the time. The average life of 2	t bearing is subject 6000 N at 150 20% of the tim inner ring rotate 500 hours.	orp.m. for 25% e; and (c) Radia es and loads are: OR	owing work cycle of the time; (b) Followed by the time; (b) Followed by the time of time of time of time of time o	Radial load of 7 at 300 r.p.m. fo	7500 N P		
	b)	Explain types of Explain lubricat grease as lubrica		ntact, bearings. A	Also compare the a	advantages of o	il with [4+6]	<u></u>	

8R	8R 8R 8R	8R	8R	E						
6. S\	The following data is given for a four-stroke diesel engine: Cylinder bore = 250 mm, Length of stroke = 300 mm, Sp mean effective pressure = 0.6 MPa, Mechanical efficience pressure = 4 MPa, Fuel consumption = 0.25 kg per BP per h fuel = 44 000 kJ/kg. Assume that 5% of the total heat de transmitted by the piston. The piston is made of grey cas N/mm ² and $k = 46.6 \text{ W/m}/^{0}\text{C}$) and the factor of safety is 5. between the centre and the edge of the piston head is 220°C .	y = 80%, Maxim n, Higher calorific veloped in the cyl t iron FG 200 (S _t	value of inder is = 200	8						
8R	a) Calculate the thickness of piston head by strength consider b) Calculate the thickness of piston head by thermal consider c) Which criterion decides the thickness of piston head? d) State whether the ribs are required. e) If so, calculate the number and thickness of piston ribs. f) State whether a cup is required in the top of the piston head g) If so, calculate the radius of the cup. OR	ation.	(10)							
7.a)	What are the lubricating methods for bearings at small and rod? Why are connecting rods made of 1 sections?	big ends of the cor	nnecting [5+5]	E						
8.	A concentric spring consists of two helical compression springs length. The composite spring is subjected to a maximum for diameter and mean coil diameter of the inner spring are 8 Also, the wire diameter and mean coil diameter of the outer respectively. The number of active coils in the inner and conserved to the spring material is 81370 N/mm². Calculate: a) The force transmitted by each spring; b) the maximum decoil the maximum torsional shear stress induced in each spring or the spring of the maximum torsional shear stress induced in each spring to the spring of the maximum torsional shear stress induced in each spring to the spring of the maximum torsional shear stress induced in each spring to the spring of the spring to the spring of the spring to the spr	orce of 2000 N. 1 and 64 mm responsible spring are 10 and outer springs are 1 he modulus of rigoeffection of the spr	he wire ectively. 80 mm 2 and 8 cidity of ing; and							
9.a) b) 10.a) b)	Derive the ratio of driving tensions for flat belt drive. Derive velocity of the belt for maximum power. Discuss the design procedure of spur gears. How the shaft and arms for spur gears are designed? OR	88	[7+3] [6+4]							
11. 8R	A pair of parallel helical gears consists of a 20 teeth pinion gear. The helix angle is 25° and the normal pressure angle is 3 mm. Calculate (a) the transverse module; (b) the transversatial pitch; (d) the pitch circle diameters of the pinion and distance; and (e) the addendum and dedendum circle diameter.	rse pressure angle at the gear; (v) the	; (c) the							
ooOoo										
2	8P 8P 8P	88	8 P							